ଗୁଣକ
8y\left(3-2y\right)
ମୂଲ୍ୟାୟନ କରିବା
8y\left(3-2y\right)
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
8\left(3y-2y^{2}\right)
8 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
y\left(3-2y\right)
3y-2y^{2}କୁ ବିବେଚନା କରନ୍ତୁ. y ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
8y\left(-2y+3\right)
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.
-16y^{2}+24y=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
y=\frac{-24±\sqrt{24^{2}}}{2\left(-16\right)}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
y=\frac{-24±24}{2\left(-16\right)}
24^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
y=\frac{-24±24}{-32}
2 କୁ -16 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{0}{-32}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-24±24}{-32} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -24 କୁ 24 ସହ ଯୋଡନ୍ତୁ.
y=0
0 କୁ -32 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=-\frac{48}{-32}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-24±24}{-32} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -24 ରୁ 24 ବିୟୋଗ କରନ୍ତୁ.
y=\frac{3}{2}
16 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-48}{-32} ହ୍ରାସ କରନ୍ତୁ.
-16y^{2}+24y=-16y\left(y-\frac{3}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 0 ଏବଂ x_{2} ପାଇଁ \frac{3}{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.
-16y^{2}+24y=-16y\times \frac{-2y+3}{-2}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା y ରୁ \frac{3}{2} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
-16y^{2}+24y=8y\left(-2y+3\right)
-16 ଏବଂ -2 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 2 ବାତିଲ୍ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}