ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

21x^{2}-6x=13
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
21x^{2}-6x-13=13-13
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 13 ବିୟୋଗ କରନ୍ତୁ.
21x^{2}-6x-13=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 13 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 21\left(-13\right)}}{2\times 21}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 21, b ପାଇଁ -6, ଏବଂ c ପାଇଁ -13 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 21\left(-13\right)}}{2\times 21}
ବର୍ଗ -6.
x=\frac{-\left(-6\right)±\sqrt{36-84\left(-13\right)}}{2\times 21}
-4 କୁ 21 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{36+1092}}{2\times 21}
-84 କୁ -13 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{1128}}{2\times 21}
36 କୁ 1092 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-6\right)±2\sqrt{282}}{2\times 21}
1128 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{6±2\sqrt{282}}{2\times 21}
-6 ର ବିପରୀତ ହେଉଛି 6.
x=\frac{6±2\sqrt{282}}{42}
2 କୁ 21 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{282}+6}{42}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{6±2\sqrt{282}}{42} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 6 କୁ 2\sqrt{282} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{282}}{21}+\frac{1}{7}
6+2\sqrt{282} କୁ 42 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{6-2\sqrt{282}}{42}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{6±2\sqrt{282}}{42} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 6 ରୁ 2\sqrt{282} ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{\sqrt{282}}{21}+\frac{1}{7}
6-2\sqrt{282} କୁ 42 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{282}}{21}+\frac{1}{7} x=-\frac{\sqrt{282}}{21}+\frac{1}{7}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
21x^{2}-6x=13
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{21x^{2}-6x}{21}=\frac{13}{21}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 21 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{6}{21}\right)x=\frac{13}{21}
21 ଦ୍ୱାରା ବିଭାଜନ କରିବା 21 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{2}{7}x=\frac{13}{21}
3 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-6}{21} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{2}{7}x+\left(-\frac{1}{7}\right)^{2}=\frac{13}{21}+\left(-\frac{1}{7}\right)^{2}
-\frac{1}{7} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{2}{7} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{7} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{13}{21}+\frac{1}{49}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{7} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{94}{147}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{49} ସହିତ \frac{13}{21} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{1}{7}\right)^{2}=\frac{94}{147}
ଗୁଣନୀୟକ x^{2}-\frac{2}{7}x+\frac{1}{49}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{7}\right)^{2}}=\sqrt{\frac{94}{147}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{7}=\frac{\sqrt{282}}{21} x-\frac{1}{7}=-\frac{\sqrt{282}}{21}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{282}}{21}+\frac{1}{7} x=-\frac{\sqrt{282}}{21}+\frac{1}{7}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{7} ଯୋଡନ୍ତୁ.