y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
y=\frac{\sqrt{3}-1}{2}\approx 0.366025404
y=\frac{-\sqrt{3}-1}{2}\approx -1.366025404
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2y^{2}+2y-1=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
y=\frac{-2±\sqrt{2^{2}-4\times 2\left(-1\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ 2, ଏବଂ c ପାଇଁ -1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
y=\frac{-2±\sqrt{4-4\times 2\left(-1\right)}}{2\times 2}
ବର୍ଗ 2.
y=\frac{-2±\sqrt{4-8\left(-1\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{-2±\sqrt{4+8}}{2\times 2}
-8 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{-2±\sqrt{12}}{2\times 2}
4 କୁ 8 ସହ ଯୋଡନ୍ତୁ.
y=\frac{-2±2\sqrt{3}}{2\times 2}
12 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
y=\frac{-2±2\sqrt{3}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{2\sqrt{3}-2}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-2±2\sqrt{3}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 2\sqrt{3} ସହ ଯୋଡନ୍ତୁ.
y=\frac{\sqrt{3}-1}{2}
-2+2\sqrt{3} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=\frac{-2\sqrt{3}-2}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-2±2\sqrt{3}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 2\sqrt{3} ବିୟୋଗ କରନ୍ତୁ.
y=\frac{-\sqrt{3}-1}{2}
-2-2\sqrt{3} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=\frac{\sqrt{3}-1}{2} y=\frac{-\sqrt{3}-1}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2y^{2}+2y-1=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
2y^{2}+2y-1-\left(-1\right)=-\left(-1\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.
2y^{2}+2y=-\left(-1\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -1 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
2y^{2}+2y=1
0 ରୁ -1 ବିୟୋଗ କରନ୍ତୁ.
\frac{2y^{2}+2y}{2}=\frac{1}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}+\frac{2}{2}y=\frac{1}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
y^{2}+y=\frac{1}{2}
2 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}+y+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 1 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
y^{2}+y+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
y^{2}+y+\frac{1}{4}=\frac{3}{4}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{4} ସହିତ \frac{1}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(y+\frac{1}{2}\right)^{2}=\frac{3}{4}
ଗୁଣନୀୟକ y^{2}+y+\frac{1}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(y+\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
y+\frac{1}{2}=\frac{\sqrt{3}}{2} y+\frac{1}{2}=-\frac{\sqrt{3}}{2}
ସରଳୀକୃତ କରିବା.
y=\frac{\sqrt{3}-1}{2} y=\frac{-\sqrt{3}-1}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{2} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}