x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=1
ଗ୍ରାଫ୍
କ୍ୱିଜ୍
Quadratic Equation
5 ଟି ପ୍ରଶ୍ନ ଏହି ପରି ଅଟେ:
2 x ( x - 5 ) + 3 x = 10 ( \frac { 1 } { 2 } - x )
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2x^{2}-10x+3x=10\left(\frac{1}{2}-x\right)
2x କୁ x-5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x^{2}-7x=10\left(\frac{1}{2}-x\right)
-7x ପାଇବାକୁ -10x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-7x=10\times \frac{1}{2}-10x
10 କୁ \frac{1}{2}-x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x^{2}-7x=\frac{10}{2}-10x
\frac{10}{2} ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ \frac{1}{2} ଗୁଣନ କରନ୍ତୁ.
2x^{2}-7x=5-10x
5 ପ୍ରାପ୍ତ କରିବାକୁ 10 କୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
2x^{2}-7x-5=-10x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-7x-5+10x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
2x^{2}+3x-5=0
3x ପାଇବାକୁ -7x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ 3, ଏବଂ c ପାଇଁ -5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
ବର୍ଗ 3.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
-8 କୁ -5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-3±\sqrt{49}}{2\times 2}
9 କୁ 40 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-3±7}{2\times 2}
49 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-3±7}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-3±7}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -3 କୁ 7 ସହ ଯୋଡନ୍ତୁ.
x=1
4 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{10}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-3±7}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -3 ରୁ 7 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{5}{2}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-10}{4} ହ୍ରାସ କରନ୍ତୁ.
x=1 x=-\frac{5}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}-10x+3x=10\left(\frac{1}{2}-x\right)
2x କୁ x-5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x^{2}-7x=10\left(\frac{1}{2}-x\right)
-7x ପାଇବାକୁ -10x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-7x=10\times \frac{1}{2}-10x
10 କୁ \frac{1}{2}-x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x^{2}-7x=\frac{10}{2}-10x
\frac{10}{2} ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ \frac{1}{2} ଗୁଣନ କରନ୍ତୁ.
2x^{2}-7x=5-10x
5 ପ୍ରାପ୍ତ କରିବାକୁ 10 କୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
2x^{2}-7x+10x=5
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
2x^{2}+3x=5
3x ପାଇବାକୁ -7x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{3}{2}x=\frac{5}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
\frac{3}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{3}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{9}{16} ସହିତ \frac{5}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
ଗୁଣନୀୟକ x^{2}+\frac{3}{2}x+\frac{9}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
ସରଳୀକୃତ କରିବା.
x=1 x=-\frac{5}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{4} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}