x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{3\sqrt{2}}{2}-2\approx 0.121320344
x=-\frac{3\sqrt{2}}{2}-2\approx -4.121320344
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2x^{2}+8x=1
2x କୁ x+4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x^{2}+8x-1=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-8±\sqrt{8^{2}-4\times 2\left(-1\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ 8, ଏବଂ c ପାଇଁ -1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-8±\sqrt{64-4\times 2\left(-1\right)}}{2\times 2}
ବର୍ଗ 8.
x=\frac{-8±\sqrt{64-8\left(-1\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-8±\sqrt{64+8}}{2\times 2}
-8 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-8±\sqrt{72}}{2\times 2}
64 କୁ 8 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-8±6\sqrt{2}}{2\times 2}
72 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-8±6\sqrt{2}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{6\sqrt{2}-8}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-8±6\sqrt{2}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -8 କୁ 6\sqrt{2} ସହ ଯୋଡନ୍ତୁ.
x=\frac{3\sqrt{2}}{2}-2
-8+6\sqrt{2} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-6\sqrt{2}-8}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-8±6\sqrt{2}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -8 ରୁ 6\sqrt{2} ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{3\sqrt{2}}{2}-2
-8-6\sqrt{2} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{3\sqrt{2}}{2}-2 x=-\frac{3\sqrt{2}}{2}-2
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}+8x=1
2x କୁ x+4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{2x^{2}+8x}{2}=\frac{1}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{8}{2}x=\frac{1}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+4x=\frac{1}{2}
8 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+4x+2^{2}=\frac{1}{2}+2^{2}
2 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 4 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+4x+4=\frac{1}{2}+4
ବର୍ଗ 2.
x^{2}+4x+4=\frac{9}{2}
\frac{1}{2} କୁ 4 ସହ ଯୋଡନ୍ତୁ.
\left(x+2\right)^{2}=\frac{9}{2}
ଗୁଣନୀୟକ x^{2}+4x+4. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+2\right)^{2}}=\sqrt{\frac{9}{2}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+2=\frac{3\sqrt{2}}{2} x+2=-\frac{3\sqrt{2}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{3\sqrt{2}}{2}-2 x=-\frac{3\sqrt{2}}{2}-2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}