ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x^{2}+2x-4x\left(x-2\right)-2x=x-4
2x କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x^{2}+2x-4x\left(x-2\right)-2x-x=-4
ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
2x^{2}+2x-4x\left(x-2\right)-3x=-4
-3x ପାଇବାକୁ -2x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+2x-4x\left(x-2\right)-3x+4=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 4 ଯୋଡନ୍ତୁ.
2x^{2}+2x-4x^{2}+8x-3x+4=0
-4x କୁ x-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-2x^{2}+2x+8x-3x+4=0
-2x^{2} ପାଇବାକୁ 2x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-2x^{2}+10x-3x+4=0
10x ପାଇବାକୁ 2x ଏବଂ 8x ସମ୍ମେଳନ କରନ୍ତୁ.
-2x^{2}+7x+4=0
7x ପାଇବାକୁ 10x ଏବଂ -3x ସମ୍ମେଳନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{7^{2}-4\left(-2\right)\times 4}}{2\left(-2\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -2, b ପାଇଁ 7, ଏବଂ c ପାଇଁ 4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-7±\sqrt{49-4\left(-2\right)\times 4}}{2\left(-2\right)}
ବର୍ଗ 7.
x=\frac{-7±\sqrt{49+8\times 4}}{2\left(-2\right)}
-4 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{49+32}}{2\left(-2\right)}
8 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{81}}{2\left(-2\right)}
49 କୁ 32 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-7±9}{2\left(-2\right)}
81 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-7±9}{-4}
2 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±9}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -7 କୁ 9 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{1}{2}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{2}{-4} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{16}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±9}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -7 ରୁ 9 ବିୟୋଗ କରନ୍ତୁ.
x=4
-16 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{1}{2} x=4
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}+2x-4x\left(x-2\right)-2x=x-4
2x କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x^{2}+2x-4x\left(x-2\right)-2x-x=-4
ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
2x^{2}+2x-4x\left(x-2\right)-3x=-4
-3x ପାଇବାକୁ -2x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+2x-4x^{2}+8x-3x=-4
-4x କୁ x-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-2x^{2}+2x+8x-3x=-4
-2x^{2} ପାଇବାକୁ 2x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-2x^{2}+10x-3x=-4
10x ପାଇବାକୁ 2x ଏବଂ 8x ସମ୍ମେଳନ କରନ୍ତୁ.
-2x^{2}+7x=-4
7x ପାଇବାକୁ 10x ଏବଂ -3x ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-2x^{2}+7x}{-2}=-\frac{4}{-2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{7}{-2}x=-\frac{4}{-2}
-2 ଦ୍ୱାରା ବିଭାଜନ କରିବା -2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{7}{2}x=-\frac{4}{-2}
7 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{7}{2}x=2
-4 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=2+\left(-\frac{7}{4}\right)^{2}
-\frac{7}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{7}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{7}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{7}{2}x+\frac{49}{16}=2+\frac{49}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{7}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{81}{16}
2 କୁ \frac{49}{16} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{7}{4}\right)^{2}=\frac{81}{16}
ଗୁଣନୀୟକ x^{2}-\frac{7}{2}x+\frac{49}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{7}{4}=\frac{9}{4} x-\frac{7}{4}=-\frac{9}{4}
ସରଳୀକୃତ କରିବା.
x=4 x=-\frac{1}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{4} ଯୋଡନ୍ତୁ.