x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{\sqrt{177} + 11}{4} \approx 6.076033674
x=\frac{11-\sqrt{177}}{4}\approx -0.576033674
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2x^{2}-7x-2-4x=5
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-11x-2=5
-11x ପାଇବାକୁ -7x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-11x-2-5=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-11x-7=0
-7 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 5 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-7\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -11, ଏବଂ c ପାଇଁ -7 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-7\right)}}{2\times 2}
ବର୍ଗ -11.
x=\frac{-\left(-11\right)±\sqrt{121-8\left(-7\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-11\right)±\sqrt{121+56}}{2\times 2}
-8 କୁ -7 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-11\right)±\sqrt{177}}{2\times 2}
121 କୁ 56 ସହ ଯୋଡନ୍ତୁ.
x=\frac{11±\sqrt{177}}{2\times 2}
-11 ର ବିପରୀତ ହେଉଛି 11.
x=\frac{11±\sqrt{177}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{177}+11}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{11±\sqrt{177}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 11 କୁ \sqrt{177} ସହ ଯୋଡନ୍ତୁ.
x=\frac{11-\sqrt{177}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{11±\sqrt{177}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 11 ରୁ \sqrt{177} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{177}+11}{4} x=\frac{11-\sqrt{177}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}-7x-2-4x=5
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-11x-2=5
-11x ପାଇବାକୁ -7x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-11x=5+2
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2 ଯୋଡନ୍ତୁ.
2x^{2}-11x=7
7 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
\frac{2x^{2}-11x}{2}=\frac{7}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{11}{2}x=\frac{7}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=\frac{7}{2}+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{11}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{11}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{7}{2}+\frac{121}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{11}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{177}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{121}{16} ସହିତ \frac{7}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{11}{4}\right)^{2}=\frac{177}{16}
ଗୁଣକ x^{2}-\frac{11}{2}x+\frac{121}{16}. ସାଧାରଣରେ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ଯଥାର୍ଥ ବର୍ଗ ହୋଇଥାଏ, ଏହା ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ରୂପେ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{177}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{11}{4}=\frac{\sqrt{177}}{4} x-\frac{11}{4}=-\frac{\sqrt{177}}{4}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{177}+11}{4} x=\frac{11-\sqrt{177}}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{11}{4} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}