ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x^{2}-16x-36=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 2\left(-36\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -16, ଏବଂ c ପାଇଁ -36 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 2\left(-36\right)}}{2\times 2}
ବର୍ଗ -16.
x=\frac{-\left(-16\right)±\sqrt{256-8\left(-36\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-16\right)±\sqrt{256+288}}{2\times 2}
-8 କୁ -36 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-16\right)±\sqrt{544}}{2\times 2}
256 କୁ 288 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-16\right)±4\sqrt{34}}{2\times 2}
544 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{16±4\sqrt{34}}{2\times 2}
-16 ର ବିପରୀତ ହେଉଛି 16.
x=\frac{16±4\sqrt{34}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4\sqrt{34}+16}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{16±4\sqrt{34}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 16 କୁ 4\sqrt{34} ସହ ଯୋଡନ୍ତୁ.
x=\sqrt{34}+4
16+4\sqrt{34} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{16-4\sqrt{34}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{16±4\sqrt{34}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 16 ରୁ 4\sqrt{34} ବିୟୋଗ କରନ୍ତୁ.
x=4-\sqrt{34}
16-4\sqrt{34} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\sqrt{34}+4 x=4-\sqrt{34}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}-16x-36=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
2x^{2}-16x-36-\left(-36\right)=-\left(-36\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 36 ଯୋଡନ୍ତୁ.
2x^{2}-16x=-\left(-36\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -36 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
2x^{2}-16x=36
0 ରୁ -36 ବିୟୋଗ କରନ୍ତୁ.
\frac{2x^{2}-16x}{2}=\frac{36}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{16}{2}\right)x=\frac{36}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-8x=\frac{36}{2}
-16 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-8x=18
36 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-8x+\left(-4\right)^{2}=18+\left(-4\right)^{2}
-4 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -8 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -4 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-8x+16=18+16
ବର୍ଗ -4.
x^{2}-8x+16=34
18 କୁ 16 ସହ ଯୋଡନ୍ତୁ.
\left(x-4\right)^{2}=34
ଗୁଣନୀୟକ x^{2}-8x+16. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-4\right)^{2}}=\sqrt{34}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-4=\sqrt{34} x-4=-\sqrt{34}
ସରଳୀକୃତ କରିବା.
x=\sqrt{34}+4 x=4-\sqrt{34}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 4 ଯୋଡନ୍ତୁ.