x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=6
x=0
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2x^{2}-10x+25-2x=25
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-12x+25=25
-12x ପାଇବାକୁ -10x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-12x+25-25=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 25 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-12x=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 25 ଏବଂ 25 ବିୟୋଗ କରନ୍ତୁ.
x\left(2x-12\right)=0
x ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=0 x=6
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x=0 ଏବଂ 2x-12=0 ସମାଧାନ କରନ୍ତୁ.
2x^{2}-10x+25-2x=25
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-12x+25=25
-12x ପାଇବାକୁ -10x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-12x+25-25=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 25 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-12x=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 25 ଏବଂ 25 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -12, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-12\right)±12}{2\times 2}
\left(-12\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{12±12}{2\times 2}
-12 ର ବିପରୀତ ହେଉଛି 12.
x=\frac{12±12}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{24}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{12±12}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 12 କୁ 12 ସହ ଯୋଡନ୍ତୁ.
x=6
24 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{0}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{12±12}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 12 ରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
x=0
0 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=6 x=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}-10x+25-2x=25
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-12x+25=25
-12x ପାଇବାକୁ -10x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-12x=25-25
ଉଭୟ ପାର୍ଶ୍ୱରୁ 25 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-12x=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 25 ଏବଂ 25 ବିୟୋଗ କରନ୍ତୁ.
\frac{2x^{2}-12x}{2}=\frac{0}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{12}{2}\right)x=\frac{0}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-6x=\frac{0}{2}
-12 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-6x=0
0 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-6x+\left(-3\right)^{2}=\left(-3\right)^{2}
-3 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -6 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -3 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-6x+9=9
ବର୍ଗ -3.
\left(x-3\right)^{2}=9
ଗୁଣନୀୟକ x^{2}-6x+9. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-3\right)^{2}}=\sqrt{9}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-3=3 x-3=-3
ସରଳୀକୃତ କରିବା.
x=6 x=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}