ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x^{2}+5x+1=0
ଅସମତାକୁ ସମାଧାନ କରିବାକୁ, ହାମ ହାତ ପାର୍ଶ୍ୱର ଗୁଣକ ବାହାର କରନ୍ତୁ. ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-5±\sqrt{5^{2}-4\times 2\times 1}}{2\times 2}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 2, b ପାଇଁ 5, ଏବଂ c ପାଇଁ 1 କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-5±\sqrt{17}}{4}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x=\frac{\sqrt{17}-5}{4} x=\frac{-\sqrt{17}-5}{4}
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ x=\frac{-5±\sqrt{17}}{4} ସମାଧାନ କରନ୍ତୁ.
2\left(x-\frac{\sqrt{17}-5}{4}\right)\left(x-\frac{-\sqrt{17}-5}{4}\right)<0
ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକ ବ୍ୟବହାର କରିବା ଦ୍ୱାରା ଅସମତାକୁ ପୁନଃ ଲେଖନ୍ତୁ.
x-\frac{\sqrt{17}-5}{4}>0 x-\frac{-\sqrt{17}-5}{4}<0
ଉତ୍ପାଦ ଋଣାତ୍ମକ ହେବା ପାଇଁ, x-\frac{\sqrt{17}-5}{4} ଏବଂ x-\frac{-\sqrt{17}-5}{4} ବିପରୀତ ଚିହ୍ନର ହେବା ଆବଶ୍ୟକ. ଯେତେବେଳେ x-\frac{\sqrt{17}-5}{4} ଧନାତ୍ମକ ଏବଂ x-\frac{-\sqrt{17}-5}{4} ଋଣାତ୍ମକ ହୋଇଥାଏ କେସ୍‌ ବିଚାର କରନ୍ତୁ.
x\in \emptyset
ଏହା କୌଣସି x ପାଇଁ ମିଥ୍ୟା ଅଟେ.
x-\frac{-\sqrt{17}-5}{4}>0 x-\frac{\sqrt{17}-5}{4}<0
ଯେତେବେଳେ x-\frac{-\sqrt{17}-5}{4} ଧନାତ୍ମକ ଏବଂ x-\frac{\sqrt{17}-5}{4} ଋଣାତ୍ମକ ହୋଇଥାଏ କେସ୍‌ ବିଚାର କରନ୍ତୁ.
x\in \left(\frac{-\sqrt{17}-5}{4},\frac{\sqrt{17}-5}{4}\right)
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x\in \left(\frac{-\sqrt{17}-5}{4},\frac{\sqrt{17}-5}{4}\right).
x\in \left(\frac{-\sqrt{17}-5}{4},\frac{\sqrt{17}-5}{4}\right)
ଚୁଡାନ୍ତ ସମାଧାନ ହେଉଛି ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକର ଯୋଗ ଅଟେ.