ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x^{2}+28x+148=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-28±\sqrt{28^{2}-4\times 2\times 148}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ 28, ଏବଂ c ପାଇଁ 148 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-28±\sqrt{784-4\times 2\times 148}}{2\times 2}
ବର୍ଗ 28.
x=\frac{-28±\sqrt{784-8\times 148}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-28±\sqrt{784-1184}}{2\times 2}
-8 କୁ 148 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-28±\sqrt{-400}}{2\times 2}
784 କୁ -1184 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-28±20i}{2\times 2}
-400 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-28±20i}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-28+20i}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-28±20i}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -28 କୁ 20i ସହ ଯୋଡନ୍ତୁ.
x=-7+5i
-28+20i କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-28-20i}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-28±20i}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -28 ରୁ 20i ବିୟୋଗ କରନ୍ତୁ.
x=-7-5i
-28-20i କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-7+5i x=-7-5i
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}+28x+148=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
2x^{2}+28x+148-148=-148
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 148 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}+28x=-148
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 148 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{2x^{2}+28x}{2}=-\frac{148}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{28}{2}x=-\frac{148}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+14x=-\frac{148}{2}
28 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+14x=-74
-148 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+14x+7^{2}=-74+7^{2}
7 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 14 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 7 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+14x+49=-74+49
ବର୍ଗ 7.
x^{2}+14x+49=-25
-74 କୁ 49 ସହ ଯୋଡନ୍ତୁ.
\left(x+7\right)^{2}=-25
ଗୁଣନୀୟକ x^{2}+14x+49. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+7\right)^{2}}=\sqrt{-25}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+7=5i x+7=-5i
ସରଳୀକୃତ କରିବା.
x=-7+5i x=-7-5i
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 7 ବିୟୋଗ କରନ୍ତୁ.