ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=17 ab=2\times 21=42
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 2x^{2}+ax+bx+21 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,42 2,21 3,14 6,7
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 42 ପ୍ରଦାନ କରିଥାଏ.
1+42=43 2+21=23 3+14=17 6+7=13
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=3 b=14
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 17 ପ୍ରଦାନ କରିଥାଏ.
\left(2x^{2}+3x\right)+\left(14x+21\right)
\left(2x^{2}+3x\right)+\left(14x+21\right) ଭାବରେ 2x^{2}+17x+21 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(2x+3\right)+7\left(2x+3\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 7 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2x+3\right)\left(x+7\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2x+3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=-\frac{3}{2} x=-7
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 2x+3=0 ଏବଂ x+7=0 ସମାଧାନ କରନ୍ତୁ.
2x^{2}+17x+21=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-17±\sqrt{17^{2}-4\times 2\times 21}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ 17, ଏବଂ c ପାଇଁ 21 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-17±\sqrt{289-4\times 2\times 21}}{2\times 2}
ବର୍ଗ 17.
x=\frac{-17±\sqrt{289-8\times 21}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-17±\sqrt{289-168}}{2\times 2}
-8 କୁ 21 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-17±\sqrt{121}}{2\times 2}
289 କୁ -168 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-17±11}{2\times 2}
121 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-17±11}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-\frac{6}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-17±11}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -17 କୁ 11 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{3}{2}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-6}{4} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{28}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-17±11}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -17 ରୁ 11 ବିୟୋଗ କରନ୍ତୁ.
x=-7
-28 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{3}{2} x=-7
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}+17x+21=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
2x^{2}+17x+21-21=-21
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 21 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}+17x=-21
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 21 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{2x^{2}+17x}{2}=-\frac{21}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{17}{2}x=-\frac{21}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{17}{2}x+\left(\frac{17}{4}\right)^{2}=-\frac{21}{2}+\left(\frac{17}{4}\right)^{2}
\frac{17}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{17}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{17}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{17}{2}x+\frac{289}{16}=-\frac{21}{2}+\frac{289}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{17}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{17}{2}x+\frac{289}{16}=\frac{121}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{289}{16} ସହିତ -\frac{21}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{17}{4}\right)^{2}=\frac{121}{16}
ଗୁଣନୀୟକ x^{2}+\frac{17}{2}x+\frac{289}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{17}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{17}{4}=\frac{11}{4} x+\frac{17}{4}=-\frac{11}{4}
ସରଳୀକୃତ କରିବା.
x=-\frac{3}{2} x=-7
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{17}{4} ବିୟୋଗ କରନ୍ତୁ.