ଗୁଣକ
2\left(u-15\right)\left(u-2\right)
ମୂଲ୍ୟାୟନ କରିବା
2\left(u-15\right)\left(u-2\right)
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2\left(u^{2}-17u+30\right)
2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
a+b=-17 ab=1\times 30=30
u^{2}-17u+30କୁ ବିବେଚନା କରନ୍ତୁ. ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି u^{2}+au+bu+30 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,-30 -2,-15 -3,-10 -5,-6
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 30 ପ୍ରଦାନ କରିଥାଏ.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-15 b=-2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -17 ପ୍ରଦାନ କରିଥାଏ.
\left(u^{2}-15u\right)+\left(-2u+30\right)
\left(u^{2}-15u\right)+\left(-2u+30\right) ଭାବରେ u^{2}-17u+30 ପୁନଃ ଲେଖନ୍ତୁ.
u\left(u-15\right)-2\left(u-15\right)
ପ୍ରଥମଟିରେ u ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(u-15\right)\left(u-2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ u-15 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
2\left(u-15\right)\left(u-2\right)
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.
2u^{2}-34u+60=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
u=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 2\times 60}}{2\times 2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
u=\frac{-\left(-34\right)±\sqrt{1156-4\times 2\times 60}}{2\times 2}
ବର୍ଗ -34.
u=\frac{-\left(-34\right)±\sqrt{1156-8\times 60}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
u=\frac{-\left(-34\right)±\sqrt{1156-480}}{2\times 2}
-8 କୁ 60 ଥର ଗୁଣନ କରନ୍ତୁ.
u=\frac{-\left(-34\right)±\sqrt{676}}{2\times 2}
1156 କୁ -480 ସହ ଯୋଡନ୍ତୁ.
u=\frac{-\left(-34\right)±26}{2\times 2}
676 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
u=\frac{34±26}{2\times 2}
-34 ର ବିପରୀତ ହେଉଛି 34.
u=\frac{34±26}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
u=\frac{60}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ u=\frac{34±26}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 34 କୁ 26 ସହ ଯୋଡନ୍ତୁ.
u=15
60 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
u=\frac{8}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ u=\frac{34±26}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 34 ରୁ 26 ବିୟୋଗ କରନ୍ତୁ.
u=2
8 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
2u^{2}-34u+60=2\left(u-15\right)\left(u-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 15 ଏବଂ x_{2} ପାଇଁ 2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}