t ପାଇଁ ସମାଧାନ କରନ୍ତୁ
t = \frac{\sqrt{105} + 7}{4} \approx 4.311737691
t=\frac{7-\sqrt{105}}{4}\approx -0.811737691
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2t^{2}-7t-7=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
t=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\left(-7\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -7, ଏବଂ c ପାଇଁ -7 ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-\left(-7\right)±\sqrt{49-4\times 2\left(-7\right)}}{2\times 2}
ବର୍ଗ -7.
t=\frac{-\left(-7\right)±\sqrt{49-8\left(-7\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-\left(-7\right)±\sqrt{49+56}}{2\times 2}
-8 କୁ -7 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-\left(-7\right)±\sqrt{105}}{2\times 2}
49 କୁ 56 ସହ ଯୋଡନ୍ତୁ.
t=\frac{7±\sqrt{105}}{2\times 2}
-7 ର ବିପରୀତ ହେଉଛି 7.
t=\frac{7±\sqrt{105}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{\sqrt{105}+7}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{7±\sqrt{105}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 7 କୁ \sqrt{105} ସହ ଯୋଡନ୍ତୁ.
t=\frac{7-\sqrt{105}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{7±\sqrt{105}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 7 ରୁ \sqrt{105} ବିୟୋଗ କରନ୍ତୁ.
t=\frac{\sqrt{105}+7}{4} t=\frac{7-\sqrt{105}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2t^{2}-7t-7=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
2t^{2}-7t-7-\left(-7\right)=-\left(-7\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 7 ଯୋଡନ୍ତୁ.
2t^{2}-7t=-\left(-7\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -7 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
2t^{2}-7t=7
0 ରୁ -7 ବିୟୋଗ କରନ୍ତୁ.
\frac{2t^{2}-7t}{2}=\frac{7}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}-\frac{7}{2}t=\frac{7}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
t^{2}-\frac{7}{2}t+\left(-\frac{7}{4}\right)^{2}=\frac{7}{2}+\left(-\frac{7}{4}\right)^{2}
-\frac{7}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{7}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{7}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
t^{2}-\frac{7}{2}t+\frac{49}{16}=\frac{7}{2}+\frac{49}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{7}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
t^{2}-\frac{7}{2}t+\frac{49}{16}=\frac{105}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{49}{16} ସହିତ \frac{7}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(t-\frac{7}{4}\right)^{2}=\frac{105}{16}
ଗୁଣନୀୟକ t^{2}-\frac{7}{2}t+\frac{49}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(t-\frac{7}{4}\right)^{2}}=\sqrt{\frac{105}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
t-\frac{7}{4}=\frac{\sqrt{105}}{4} t-\frac{7}{4}=-\frac{\sqrt{105}}{4}
ସରଳୀକୃତ କରିବା.
t=\frac{\sqrt{105}+7}{4} t=\frac{7-\sqrt{105}}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{4} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}