t ପାଇଁ ସମାଧାନ କରନ୍ତୁ
t=\sqrt{6}+1\approx 3.449489743
t=1-\sqrt{6}\approx -1.449489743
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2t-\left(-5\right)=t^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ -5 ବିୟୋଗ କରନ୍ତୁ.
2t+5=t^{2}
-5 ର ବିପରୀତ ହେଉଛି 5.
2t+5-t^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ t^{2} ବିୟୋଗ କରନ୍ତୁ.
-t^{2}+2t+5=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
t=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 2, ଏବଂ c ପାଇଁ 5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-2±\sqrt{4-4\left(-1\right)\times 5}}{2\left(-1\right)}
ବର୍ଗ 2.
t=\frac{-2±\sqrt{4+4\times 5}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-2±\sqrt{4+20}}{2\left(-1\right)}
4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-2±\sqrt{24}}{2\left(-1\right)}
4 କୁ 20 ସହ ଯୋଡନ୍ତୁ.
t=\frac{-2±2\sqrt{6}}{2\left(-1\right)}
24 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
t=\frac{-2±2\sqrt{6}}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{2\sqrt{6}-2}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{-2±2\sqrt{6}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 2\sqrt{6} ସହ ଯୋଡନ୍ତୁ.
t=1-\sqrt{6}
-2+2\sqrt{6} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t=\frac{-2\sqrt{6}-2}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{-2±2\sqrt{6}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 2\sqrt{6} ବିୟୋଗ କରନ୍ତୁ.
t=\sqrt{6}+1
-2-2\sqrt{6} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t=1-\sqrt{6} t=\sqrt{6}+1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2t-t^{2}=-5
ଉଭୟ ପାର୍ଶ୍ୱରୁ t^{2} ବିୟୋଗ କରନ୍ତୁ.
-t^{2}+2t=-5
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-t^{2}+2t}{-1}=-\frac{5}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}+\frac{2}{-1}t=-\frac{5}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
t^{2}-2t=-\frac{5}{-1}
2 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}-2t=5
-5 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}-2t+1=5+1
-1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
t^{2}-2t+1=6
5 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(t-1\right)^{2}=6
ଗୁଣନୀୟକ t^{2}-2t+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(t-1\right)^{2}}=\sqrt{6}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
t-1=\sqrt{6} t-1=-\sqrt{6}
ସରଳୀକୃତ କରିବା.
t=\sqrt{6}+1 t=1-\sqrt{6}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}