ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
n ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2n^{2}-5n-4=6
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
2n^{2}-5n-4-6=6-6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 6 ବିୟୋଗ କରନ୍ତୁ.
2n^{2}-5n-4-6=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 6 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
2n^{2}-5n-10=0
-4 ରୁ 6 ବିୟୋଗ କରନ୍ତୁ.
n=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-10\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -5, ଏବଂ c ପାଇଁ -10 ପ୍ରତିବଦଳ କରନ୍ତୁ.
n=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-10\right)}}{2\times 2}
ବର୍ଗ -5.
n=\frac{-\left(-5\right)±\sqrt{25-8\left(-10\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{-\left(-5\right)±\sqrt{25+80}}{2\times 2}
-8 କୁ -10 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{-\left(-5\right)±\sqrt{105}}{2\times 2}
25 କୁ 80 ସହ ଯୋଡନ୍ତୁ.
n=\frac{5±\sqrt{105}}{2\times 2}
-5 ର ବିପରୀତ ହେଉଛି 5.
n=\frac{5±\sqrt{105}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{\sqrt{105}+5}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{5±\sqrt{105}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 5 କୁ \sqrt{105} ସହ ଯୋଡନ୍ତୁ.
n=\frac{5-\sqrt{105}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{5±\sqrt{105}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 5 ରୁ \sqrt{105} ବିୟୋଗ କରନ୍ତୁ.
n=\frac{\sqrt{105}+5}{4} n=\frac{5-\sqrt{105}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2n^{2}-5n-4=6
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
2n^{2}-5n-4-\left(-4\right)=6-\left(-4\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 4 ଯୋଡନ୍ତୁ.
2n^{2}-5n=6-\left(-4\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -4 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
2n^{2}-5n=10
6 ରୁ -4 ବିୟୋଗ କରନ୍ତୁ.
\frac{2n^{2}-5n}{2}=\frac{10}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n^{2}-\frac{5}{2}n=\frac{10}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
n^{2}-\frac{5}{2}n=5
10 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n^{2}-\frac{5}{2}n+\left(-\frac{5}{4}\right)^{2}=5+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{5}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
n^{2}-\frac{5}{2}n+\frac{25}{16}=5+\frac{25}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
n^{2}-\frac{5}{2}n+\frac{25}{16}=\frac{105}{16}
5 କୁ \frac{25}{16} ସହ ଯୋଡନ୍ତୁ.
\left(n-\frac{5}{4}\right)^{2}=\frac{105}{16}
ଗୁଣନୀୟକ n^{2}-\frac{5}{2}n+\frac{25}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(n-\frac{5}{4}\right)^{2}}=\sqrt{\frac{105}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
n-\frac{5}{4}=\frac{\sqrt{105}}{4} n-\frac{5}{4}=-\frac{\sqrt{105}}{4}
ସରଳୀକୃତ କରିବା.
n=\frac{\sqrt{105}+5}{4} n=\frac{5-\sqrt{105}}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{4} ଯୋଡନ୍ତୁ.