ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2\left(n^{2}-2n-35\right)
2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
a+b=-2 ab=1\left(-35\right)=-35
n^{2}-2n-35କୁ ବିବେଚନା କରନ୍ତୁ. ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି n^{2}+an+bn-35 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-35 5,-7
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -35 ପ୍ରଦାନ କରିଥାଏ.
1-35=-34 5-7=-2
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-7 b=5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -2 ପ୍ରଦାନ କରିଥାଏ.
\left(n^{2}-7n\right)+\left(5n-35\right)
\left(n^{2}-7n\right)+\left(5n-35\right) ଭାବରେ n^{2}-2n-35 ପୁନଃ ଲେଖନ୍ତୁ.
n\left(n-7\right)+5\left(n-7\right)
ପ୍ରଥମଟିରେ n ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(n-7\right)\left(n+5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ n-7 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
2\left(n-7\right)\left(n+5\right)
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.
2n^{2}-4n-70=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
n=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-70\right)}}{2\times 2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
n=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-70\right)}}{2\times 2}
ବର୍ଗ -4.
n=\frac{-\left(-4\right)±\sqrt{16-8\left(-70\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{-\left(-4\right)±\sqrt{16+560}}{2\times 2}
-8 କୁ -70 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{-\left(-4\right)±\sqrt{576}}{2\times 2}
16 କୁ 560 ସହ ଯୋଡନ୍ତୁ.
n=\frac{-\left(-4\right)±24}{2\times 2}
576 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
n=\frac{4±24}{2\times 2}
-4 ର ବିପରୀତ ହେଉଛି 4.
n=\frac{4±24}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{28}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{4±24}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 24 ସହ ଯୋଡନ୍ତୁ.
n=7
28 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n=-\frac{20}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{4±24}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 24 ବିୟୋଗ କରନ୍ତୁ.
n=-5
-20 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
2n^{2}-4n-70=2\left(n-7\right)\left(n-\left(-5\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 7 ଏବଂ x_{2} ପାଇଁ -5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
2n^{2}-4n-70=2\left(n-7\right)\left(n+5\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.