ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2\left(n^{2}+14n+48\right)
2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
a+b=14 ab=1\times 48=48
n^{2}+14n+48କୁ ବିବେଚନା କରନ୍ତୁ. ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି n^{2}+an+bn+48 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,48 2,24 3,16 4,12 6,8
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 48 ପ୍ରଦାନ କରିଥାଏ.
1+48=49 2+24=26 3+16=19 4+12=16 6+8=14
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=6 b=8
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 14 ପ୍ରଦାନ କରିଥାଏ.
\left(n^{2}+6n\right)+\left(8n+48\right)
\left(n^{2}+6n\right)+\left(8n+48\right) ଭାବରେ n^{2}+14n+48 ପୁନଃ ଲେଖନ୍ତୁ.
n\left(n+6\right)+8\left(n+6\right)
ପ୍ରଥମଟିରେ n ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 8 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(n+6\right)\left(n+8\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ n+6 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
2\left(n+6\right)\left(n+8\right)
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.
2n^{2}+28n+96=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
n=\frac{-28±\sqrt{28^{2}-4\times 2\times 96}}{2\times 2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
n=\frac{-28±\sqrt{784-4\times 2\times 96}}{2\times 2}
ବର୍ଗ 28.
n=\frac{-28±\sqrt{784-8\times 96}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{-28±\sqrt{784-768}}{2\times 2}
-8 କୁ 96 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{-28±\sqrt{16}}{2\times 2}
784 କୁ -768 ସହ ଯୋଡନ୍ତୁ.
n=\frac{-28±4}{2\times 2}
16 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
n=\frac{-28±4}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
n=-\frac{24}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{-28±4}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -28 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
n=-6
-24 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n=-\frac{32}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{-28±4}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -28 ରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
n=-8
-32 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
2n^{2}+28n+96=2\left(n-\left(-6\right)\right)\left(n-\left(-8\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ -6 ଏବଂ x_{2} ପାଇଁ -8 ପ୍ରତିବଦଳ କରନ୍ତୁ.
2n^{2}+28n+96=2\left(n+6\right)\left(n+8\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.