ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x^{2}-4x-135=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-135\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -4, ଏବଂ c ପାଇଁ -135 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-135\right)}}{2\times 2}
ବର୍ଗ -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-135\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16+1080}}{2\times 2}
-8 କୁ -135 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{1096}}{2\times 2}
16 କୁ 1080 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-4\right)±2\sqrt{274}}{2\times 2}
1096 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4±2\sqrt{274}}{2\times 2}
-4 ର ବିପରୀତ ହେଉଛି 4.
x=\frac{4±2\sqrt{274}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{274}+4}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±2\sqrt{274}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 2\sqrt{274} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{274}}{2}+1
4+2\sqrt{274} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{4-2\sqrt{274}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±2\sqrt{274}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 2\sqrt{274} ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{\sqrt{274}}{2}+1
4-2\sqrt{274} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{274}}{2}+1 x=-\frac{\sqrt{274}}{2}+1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}-4x-135=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
2x^{2}-4x-135-\left(-135\right)=-\left(-135\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 135 ଯୋଡନ୍ତୁ.
2x^{2}-4x=-\left(-135\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -135 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
2x^{2}-4x=135
0 ରୁ -135 ବିୟୋଗ କରନ୍ତୁ.
\frac{2x^{2}-4x}{2}=\frac{135}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{135}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-2x=\frac{135}{2}
-4 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-2x+1=\frac{135}{2}+1
-1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-2x+1=\frac{137}{2}
\frac{135}{2} କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x-1\right)^{2}=\frac{137}{2}
ଗୁଣନୀୟକ x^{2}-2x+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{137}{2}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-1=\frac{\sqrt{274}}{2} x-1=-\frac{\sqrt{274}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{274}}{2}+1 x=-\frac{\sqrt{274}}{2}+1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.