ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x^{2}+5x+3=20
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
2x^{2}+5x+3-20=20-20
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 20 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}+5x+3-20=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 20 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
2x^{2}+5x-17=0
3 ରୁ 20 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-17\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ 5, ଏବଂ c ପାଇଁ -17 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-5±\sqrt{25-4\times 2\left(-17\right)}}{2\times 2}
ବର୍ଗ 5.
x=\frac{-5±\sqrt{25-8\left(-17\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-5±\sqrt{25+136}}{2\times 2}
-8 କୁ -17 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-5±\sqrt{161}}{2\times 2}
25 କୁ 136 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-5±\sqrt{161}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{161}-5}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-5±\sqrt{161}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -5 କୁ \sqrt{161} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{161}-5}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-5±\sqrt{161}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -5 ରୁ \sqrt{161} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{161}-5}{4} x=\frac{-\sqrt{161}-5}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}+5x+3=20
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
2x^{2}+5x+3-3=20-3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}+5x=20-3
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 3 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
2x^{2}+5x=17
20 ରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
\frac{2x^{2}+5x}{2}=\frac{17}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{5}{2}x=\frac{17}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{17}{2}+\left(\frac{5}{4}\right)^{2}
\frac{5}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{5}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{17}{2}+\frac{25}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{5}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{161}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{25}{16} ସହିତ \frac{17}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{5}{4}\right)^{2}=\frac{161}{16}
ଗୁଣନୀୟକ x^{2}+\frac{5}{2}x+\frac{25}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{161}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{5}{4}=\frac{\sqrt{161}}{4} x+\frac{5}{4}=-\frac{\sqrt{161}}{4}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{161}-5}{4} x=\frac{-\sqrt{161}-5}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{5}{4} ବିୟୋଗ କରନ୍ତୁ.