ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

190=x^{2}+9x
x+9 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+9x=190
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x^{2}+9x-190=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 190 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-9±\sqrt{9^{2}-4\left(-190\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 9, ଏବଂ c ପାଇଁ -190 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-9±\sqrt{81-4\left(-190\right)}}{2}
ବର୍ଗ 9.
x=\frac{-9±\sqrt{81+760}}{2}
-4 କୁ -190 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-9±\sqrt{841}}{2}
81 କୁ 760 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-9±29}{2}
841 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{20}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-9±29}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -9 କୁ 29 ସହ ଯୋଡନ୍ତୁ.
x=10
20 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{38}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-9±29}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -9 ରୁ 29 ବିୟୋଗ କରନ୍ତୁ.
x=-19
-38 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=10 x=-19
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
190=x^{2}+9x
x+9 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+9x=190
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=190+\left(\frac{9}{2}\right)^{2}
\frac{9}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 9 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{9}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+9x+\frac{81}{4}=190+\frac{81}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{9}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+9x+\frac{81}{4}=\frac{841}{4}
190 କୁ \frac{81}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{9}{2}\right)^{2}=\frac{841}{4}
ଗୁଣନୀୟକ x^{2}+9x+\frac{81}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{841}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{9}{2}=\frac{29}{2} x+\frac{9}{2}=-\frac{29}{2}
ସରଳୀକୃତ କରିବା.
x=10 x=-19
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{9}{2} ବିୟୋଗ କରନ୍ତୁ.