ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-9 ab=18\left(-5\right)=-90
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 18t^{2}+at+bt-5 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -90 ପ୍ରଦାନ କରିଥାଏ.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-15 b=6
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -9 ପ୍ରଦାନ କରିଥାଏ.
\left(18t^{2}-15t\right)+\left(6t-5\right)
\left(18t^{2}-15t\right)+\left(6t-5\right) ଭାବରେ 18t^{2}-9t-5 ପୁନଃ ଲେଖନ୍ତୁ.
3t\left(6t-5\right)+6t-5
18t^{2}-15tରେ 3t ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(6t-5\right)\left(3t+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 6t-5 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
18t^{2}-9t-5=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
t=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 18\left(-5\right)}}{2\times 18}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
t=\frac{-\left(-9\right)±\sqrt{81-4\times 18\left(-5\right)}}{2\times 18}
ବର୍ଗ -9.
t=\frac{-\left(-9\right)±\sqrt{81-72\left(-5\right)}}{2\times 18}
-4 କୁ 18 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-\left(-9\right)±\sqrt{81+360}}{2\times 18}
-72 କୁ -5 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-\left(-9\right)±\sqrt{441}}{2\times 18}
81 କୁ 360 ସହ ଯୋଡନ୍ତୁ.
t=\frac{-\left(-9\right)±21}{2\times 18}
441 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
t=\frac{9±21}{2\times 18}
-9 ର ବିପରୀତ ହେଉଛି 9.
t=\frac{9±21}{36}
2 କୁ 18 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{30}{36}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{9±21}{36} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 9 କୁ 21 ସହ ଯୋଡନ୍ତୁ.
t=\frac{5}{6}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{30}{36} ହ୍ରାସ କରନ୍ତୁ.
t=-\frac{12}{36}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{9±21}{36} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 9 ରୁ 21 ବିୟୋଗ କରନ୍ତୁ.
t=-\frac{1}{3}
12 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-12}{36} ହ୍ରାସ କରନ୍ତୁ.
18t^{2}-9t-5=18\left(t-\frac{5}{6}\right)\left(t-\left(-\frac{1}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ \frac{5}{6} ଏବଂ x_{2} ପାଇଁ -\frac{1}{3} ପ୍ରତିବଦଳ କରନ୍ତୁ.
18t^{2}-9t-5=18\left(t-\frac{5}{6}\right)\left(t+\frac{1}{3}\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
18t^{2}-9t-5=18\times \frac{6t-5}{6}\left(t+\frac{1}{3}\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା t ରୁ \frac{5}{6} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
18t^{2}-9t-5=18\times \frac{6t-5}{6}\times \frac{3t+1}{3}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା t ସହିତ \frac{1}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
18t^{2}-9t-5=18\times \frac{\left(6t-5\right)\left(3t+1\right)}{6\times 3}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{6t-5}{6} କୁ \frac{3t+1}{3} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
18t^{2}-9t-5=18\times \frac{\left(6t-5\right)\left(3t+1\right)}{18}
6 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
18t^{2}-9t-5=\left(6t-5\right)\left(3t+1\right)
18 ଏବଂ 18 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 18 ବାତିଲ୍‌ କରନ୍ତୁ.