ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
t ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

22t-5t^{2}=17
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
22t-5t^{2}-17=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 17 ବିୟୋଗ କରନ୍ତୁ.
-5t^{2}+22t-17=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=22 ab=-5\left(-17\right)=85
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -5t^{2}+at+bt-17 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,85 5,17
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 85 ପ୍ରଦାନ କରିଥାଏ.
1+85=86 5+17=22
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=17 b=5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 22 ପ୍ରଦାନ କରିଥାଏ.
\left(-5t^{2}+17t\right)+\left(5t-17\right)
\left(-5t^{2}+17t\right)+\left(5t-17\right) ଭାବରେ -5t^{2}+22t-17 ପୁନଃ ଲେଖନ୍ତୁ.
-t\left(5t-17\right)+5t-17
-5t^{2}+17tରେ -t ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(5t-17\right)\left(-t+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 5t-17 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
t=\frac{17}{5} t=1
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 5t-17=0 ଏବଂ -t+1=0 ସମାଧାନ କରନ୍ତୁ.
22t-5t^{2}=17
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
22t-5t^{2}-17=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 17 ବିୟୋଗ କରନ୍ତୁ.
-5t^{2}+22t-17=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
t=\frac{-22±\sqrt{22^{2}-4\left(-5\right)\left(-17\right)}}{2\left(-5\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -5, b ପାଇଁ 22, ଏବଂ c ପାଇଁ -17 ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-22±\sqrt{484-4\left(-5\right)\left(-17\right)}}{2\left(-5\right)}
ବର୍ଗ 22.
t=\frac{-22±\sqrt{484+20\left(-17\right)}}{2\left(-5\right)}
-4 କୁ -5 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-22±\sqrt{484-340}}{2\left(-5\right)}
20 କୁ -17 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-22±\sqrt{144}}{2\left(-5\right)}
484 କୁ -340 ସହ ଯୋଡନ୍ତୁ.
t=\frac{-22±12}{2\left(-5\right)}
144 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
t=\frac{-22±12}{-10}
2 କୁ -5 ଥର ଗୁଣନ କରନ୍ତୁ.
t=-\frac{10}{-10}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{-22±12}{-10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -22 କୁ 12 ସହ ଯୋଡନ୍ତୁ.
t=1
-10 କୁ -10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t=-\frac{34}{-10}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{-22±12}{-10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -22 ରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
t=\frac{17}{5}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-34}{-10} ହ୍ରାସ କରନ୍ତୁ.
t=1 t=\frac{17}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
22t-5t^{2}=17
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
-5t^{2}+22t=17
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-5t^{2}+22t}{-5}=\frac{17}{-5}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}+\frac{22}{-5}t=\frac{17}{-5}
-5 ଦ୍ୱାରା ବିଭାଜନ କରିବା -5 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
t^{2}-\frac{22}{5}t=\frac{17}{-5}
22 କୁ -5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}-\frac{22}{5}t=-\frac{17}{5}
17 କୁ -5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}-\frac{22}{5}t+\left(-\frac{11}{5}\right)^{2}=-\frac{17}{5}+\left(-\frac{11}{5}\right)^{2}
-\frac{11}{5} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{22}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{11}{5} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
t^{2}-\frac{22}{5}t+\frac{121}{25}=-\frac{17}{5}+\frac{121}{25}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{11}{5} ବର୍ଗ ବାହାର କରନ୍ତୁ.
t^{2}-\frac{22}{5}t+\frac{121}{25}=\frac{36}{25}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{121}{25} ସହିତ -\frac{17}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(t-\frac{11}{5}\right)^{2}=\frac{36}{25}
ଗୁଣନୀୟକ t^{2}-\frac{22}{5}t+\frac{121}{25}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(t-\frac{11}{5}\right)^{2}}=\sqrt{\frac{36}{25}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
t-\frac{11}{5}=\frac{6}{5} t-\frac{11}{5}=-\frac{6}{5}
ସରଳୀକୃତ କରିବା.
t=\frac{17}{5} t=1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{11}{5} ଯୋଡନ୍ତୁ.