ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=19 ab=16\times 3=48
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 16x^{2}+ax+bx+3 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,48 2,24 3,16 4,12 6,8
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 48 ପ୍ରଦାନ କରିଥାଏ.
1+48=49 2+24=26 3+16=19 4+12=16 6+8=14
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=3 b=16
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 19 ପ୍ରଦାନ କରିଥାଏ.
\left(16x^{2}+3x\right)+\left(16x+3\right)
\left(16x^{2}+3x\right)+\left(16x+3\right) ଭାବରେ 16x^{2}+19x+3 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(16x+3\right)+16x+3
16x^{2}+3xରେ x ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(16x+3\right)\left(x+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 16x+3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
16x^{2}+19x+3=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-19±\sqrt{19^{2}-4\times 16\times 3}}{2\times 16}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-19±\sqrt{361-4\times 16\times 3}}{2\times 16}
ବର୍ଗ 19.
x=\frac{-19±\sqrt{361-64\times 3}}{2\times 16}
-4 କୁ 16 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-19±\sqrt{361-192}}{2\times 16}
-64 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-19±\sqrt{169}}{2\times 16}
361 କୁ -192 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-19±13}{2\times 16}
169 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-19±13}{32}
2 କୁ 16 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-\frac{6}{32}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-19±13}{32} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -19 କୁ 13 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{3}{16}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-6}{32} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{32}{32}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-19±13}{32} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -19 ରୁ 13 ବିୟୋଗ କରନ୍ତୁ.
x=-1
-32 କୁ 32 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
16x^{2}+19x+3=16\left(x-\left(-\frac{3}{16}\right)\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ -\frac{3}{16} ଏବଂ x_{2} ପାଇଁ -1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
16x^{2}+19x+3=16\left(x+\frac{3}{16}\right)\left(x+1\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
16x^{2}+19x+3=16\times \frac{16x+3}{16}\left(x+1\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା x ସହିତ \frac{3}{16} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
16x^{2}+19x+3=\left(16x+3\right)\left(x+1\right)
16 ଏବଂ 16 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 16 ବାତିଲ୍‌ କରନ୍ତୁ.