ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2\left(7x^{2}+6x-1\right)
2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
a+b=6 ab=7\left(-1\right)=-7
7x^{2}+6x-1କୁ ବିବେଚନା କରନ୍ତୁ. ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 7x^{2}+ax+bx-1 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
a=-1 b=7
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. କେବଳ ଏହିଭଳି ଯୋଡା ହେଉଛି ସିଷ୍ଟମ୍‌ ସମାଧାନ.
\left(7x^{2}-x\right)+\left(7x-1\right)
\left(7x^{2}-x\right)+\left(7x-1\right) ଭାବରେ 7x^{2}+6x-1 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(7x-1\right)+7x-1
7x^{2}-xରେ x ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(7x-1\right)\left(x+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 7x-1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
2\left(7x-1\right)\left(x+1\right)
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.
14x^{2}+12x-2=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-12±\sqrt{12^{2}-4\times 14\left(-2\right)}}{2\times 14}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-12±\sqrt{144-4\times 14\left(-2\right)}}{2\times 14}
ବର୍ଗ 12.
x=\frac{-12±\sqrt{144-56\left(-2\right)}}{2\times 14}
-4 କୁ 14 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-12±\sqrt{144+112}}{2\times 14}
-56 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-12±\sqrt{256}}{2\times 14}
144 କୁ 112 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-12±16}{2\times 14}
256 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-12±16}{28}
2 କୁ 14 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4}{28}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-12±16}{28} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -12 କୁ 16 ସହ ଯୋଡନ୍ତୁ.
x=\frac{1}{7}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{4}{28} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{28}{28}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-12±16}{28} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -12 ରୁ 16 ବିୟୋଗ କରନ୍ତୁ.
x=-1
-28 କୁ 28 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
14x^{2}+12x-2=14\left(x-\frac{1}{7}\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ \frac{1}{7} ଏବଂ x_{2} ପାଇଁ -1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
14x^{2}+12x-2=14\left(x-\frac{1}{7}\right)\left(x+1\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
14x^{2}+12x-2=14\times \frac{7x-1}{7}\left(x+1\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା x ରୁ \frac{1}{7} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
14x^{2}+12x-2=2\left(7x-1\right)\left(x+1\right)
14 ଏବଂ 7 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 7 ବାତିଲ୍‌ କରନ୍ତୁ.