ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2\left(64-16x+x^{2}\right)
2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-8\right)^{2}
64-16x+x^{2}କୁ ବିବେଚନା କରନ୍ତୁ. ଯଥାର୍ଥ ବର୍ଗ ସୂତ୍ର ବ୍ୟବହାର କରନ୍ତୁ, a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, ଯେଉଁଠାରେ a=x ଏବଂ b=8.
2\left(x-8\right)^{2}
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.
factor(2x^{2}-32x+128)
ଏହି ଟ୍ରାଇନମିଆଲ୍‌ର ଏକ ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗର ରୂପ ରହିଛି, ସମ୍ଭବତଃ ଏକ ସାଧାରଣ ଗୁଣନୀୟକ ଦ୍ୱାରା ଗୁଣିତ ହୋଇଥାଏ. ଅଗ୍ରଗାମୀ ଏବଂ ଅନୁଗାମୀ ପଦଗୁଡିକର ବର୍ଗମୂଳ ନିର୍ଣ୍ଣୟ କରିବା ଦ୍ୱାରା ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗଗୁଡିକୁ ଗୁଣନୀୟକଯୁକ୍ତ କରାଯାଇପାରିବ.
gcf(2,-32,128)=2
ଗୁଣାଙ୍କଗୁଡିକର ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନୀୟକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
2\left(x^{2}-16x+64\right)
2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\sqrt{64}=8
ଅନୁଗାମୀ ପଦ, 64 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
2\left(x-8\right)^{2}
ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗ ହେଉଛି ବାଇନମିଆଲ୍‌ର ବର୍ଗ ଯାହା ହେଉଛି ଅଗ୍ରଗାମୀ ଏବଂ ଅନୁଗାମୀ ପଦଗୁଡିକ ବର୍ଗମୂଳର ପାର୍ଥକ୍ୟ କିମ୍ବା ସମଷ୍ଟି, ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗର ମଧ୍ୟମ ପଦର ଚିହ୍ନ ଦ୍ୱାରା ନିର୍ଦ୍ଧାରିତ ଚିହ୍ନ ସହିତ.
2x^{2}-32x+128=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 2\times 128}}{2\times 2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 2\times 128}}{2\times 2}
ବର୍ଗ -32.
x=\frac{-\left(-32\right)±\sqrt{1024-8\times 128}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-32\right)±\sqrt{1024-1024}}{2\times 2}
-8 କୁ 128 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-32\right)±\sqrt{0}}{2\times 2}
1024 କୁ -1024 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-32\right)±0}{2\times 2}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{32±0}{2\times 2}
-32 ର ବିପରୀତ ହେଉଛି 32.
x=\frac{32±0}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
2x^{2}-32x+128=2\left(x-8\right)\left(x-8\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 8 ଏବଂ x_{2} ପାଇଁ 8 ପ୍ରତିବଦଳ କରନ୍ତୁ.