124 \times 45 \% +35 \% =
ମୂଲ୍ୟାୟନ କରିବା
\frac{1123}{20}=56.15
ଗୁଣକ
\frac{1123}{2 ^ {2} \cdot 5} = 56\frac{3}{20} = 56.15
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
124\times \frac{9}{20}+\frac{35}{100}
5 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{45}{100} ହ୍ରାସ କରନ୍ତୁ.
\frac{124\times 9}{20}+\frac{35}{100}
124\times \frac{9}{20} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{1116}{20}+\frac{35}{100}
1116 ପ୍ରାପ୍ତ କରିବାକୁ 124 ଏବଂ 9 ଗୁଣନ କରନ୍ତୁ.
\frac{279}{5}+\frac{35}{100}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{1116}{20} ହ୍ରାସ କରନ୍ତୁ.
\frac{279}{5}+\frac{7}{20}
5 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{35}{100} ହ୍ରାସ କରନ୍ତୁ.
\frac{1116}{20}+\frac{7}{20}
5 ଏବଂ 20 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 20. \frac{279}{5} ଏବଂ \frac{7}{20} କୁ 20 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{1116+7}{20}
ଯେହେତୁ \frac{1116}{20} ଏବଂ \frac{7}{20} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{1123}{20}
1123 ପ୍ରାପ୍ତ କରିବାକୁ 1116 ଏବଂ 7 ଯୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}