ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-2x^{2}-5x+12
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-5 ab=-2\times 12=-24
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି -2x^{2}+ax+bx+12 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-24 2,-12 3,-8 4,-6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -24 ପ୍ରଦାନ କରିଥାଏ.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=3 b=-8
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -5 ପ୍ରଦାନ କରିଥାଏ.
\left(-2x^{2}+3x\right)+\left(-8x+12\right)
\left(-2x^{2}+3x\right)+\left(-8x+12\right) ଭାବରେ -2x^{2}-5x+12 ପୁନଃ ଲେଖନ୍ତୁ.
-x\left(2x-3\right)-4\left(2x-3\right)
ପ୍ରଥମଟିରେ -x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -4 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2x-3\right)\left(-x-4\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
-2x^{2}-5x+12=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-2\right)\times 12}}{2\left(-2\right)}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-2\right)\times 12}}{2\left(-2\right)}
ବର୍ଗ -5.
x=\frac{-\left(-5\right)±\sqrt{25+8\times 12}}{2\left(-2\right)}
-4 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±\sqrt{25+96}}{2\left(-2\right)}
8 କୁ 12 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±\sqrt{121}}{2\left(-2\right)}
25 କୁ 96 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-5\right)±11}{2\left(-2\right)}
121 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{5±11}{2\left(-2\right)}
-5 ର ବିପରୀତ ହେଉଛି 5.
x=\frac{5±11}{-4}
2 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{16}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{5±11}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 5 କୁ 11 ସହ ଯୋଡନ୍ତୁ.
x=-4
16 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{6}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{5±11}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 5 ରୁ 11 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{3}{2}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-6}{-4} ହ୍ରାସ କରନ୍ତୁ.
-2x^{2}-5x+12=-2\left(x-\left(-4\right)\right)\left(x-\frac{3}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ -4 ଏବଂ x_{2} ପାଇଁ \frac{3}{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.
-2x^{2}-5x+12=-2\left(x+4\right)\left(x-\frac{3}{2}\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
-2x^{2}-5x+12=-2\left(x+4\right)\times \frac{-2x+3}{-2}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା x ରୁ \frac{3}{2} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
-2x^{2}-5x+12=\left(x+4\right)\left(-2x+3\right)
-2 ଏବଂ 2 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 2 ବାତିଲ୍‌ କରନ୍ତୁ.