ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

12x^{2}-144x+9>0
2 ର 12 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 144 ପ୍ରାପ୍ତ କରନ୍ତୁ.
12x^{2}-144x+9=0
ଅସମତାକୁ ସମାଧାନ କରିବାକୁ, ହାମ ହାତ ପାର୍ଶ୍ୱର ଗୁଣକ ବାହାର କରନ୍ତୁ. ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\times 12\times 9}}{2\times 12}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 12, b ପାଇଁ -144, ଏବଂ c ପାଇଁ 9 କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{144±12\sqrt{141}}{24}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x=\frac{\sqrt{141}}{2}+6 x=-\frac{\sqrt{141}}{2}+6
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ x=\frac{144±12\sqrt{141}}{24} ସମାଧାନ କରନ୍ତୁ.
12\left(x-\left(\frac{\sqrt{141}}{2}+6\right)\right)\left(x-\left(-\frac{\sqrt{141}}{2}+6\right)\right)>0
ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକ ବ୍ୟବହାର କରିବା ଦ୍ୱାରା ଅସମତାକୁ ପୁନଃ ଲେଖନ୍ତୁ.
x-\left(\frac{\sqrt{141}}{2}+6\right)<0 x-\left(-\frac{\sqrt{141}}{2}+6\right)<0
ଉତ୍ପାଦ ଧନାତ୍ମକ ହେବା ପାଇଁ, x-\left(\frac{\sqrt{141}}{2}+6\right) ଏବଂ x-\left(-\frac{\sqrt{141}}{2}+6\right) ଉଭୟ ଋଣାତ୍ମକ କିମ୍ବା ଉଭୟ ଧନାତ୍ମକ ହେବା ଆବଶ୍ୟକ. ଯେତେବେଳେ x-\left(\frac{\sqrt{141}}{2}+6\right) ଏବଂ x-\left(-\frac{\sqrt{141}}{2}+6\right) ଉଭୟ ନେଗେଟିଭ୍‌ ରହିଥାଏ କେସ୍‌ ବିଚାର କରନ୍ତୁ.
x<-\frac{\sqrt{141}}{2}+6
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x<-\frac{\sqrt{141}}{2}+6.
x-\left(-\frac{\sqrt{141}}{2}+6\right)>0 x-\left(\frac{\sqrt{141}}{2}+6\right)>0
ଯେତେବେଳେ x-\left(\frac{\sqrt{141}}{2}+6\right) ଏବଂ x-\left(-\frac{\sqrt{141}}{2}+6\right) ଉଭୟ ଧନାତ୍ମକ ରହିଥାଏ କେସ୍‌ ବିଚାର କରନ୍ତୁ.
x>\frac{\sqrt{141}}{2}+6
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x>\frac{\sqrt{141}}{2}+6.
x<-\frac{\sqrt{141}}{2}+6\text{; }x>\frac{\sqrt{141}}{2}+6
ଚୁଡାନ୍ତ ସମାଧାନ ହେଉଛି ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକର ଯୋଗ ଅଟେ.