x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = -\frac{7}{4} = -1\frac{3}{4} = -1.75
x=\frac{2}{3}\approx 0.666666667
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a+b=13 ab=12\left(-14\right)=-168
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 12x^{2}+ax+bx-14 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,168 -2,84 -3,56 -4,42 -6,28 -7,24 -8,21 -12,14
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -168 ପ୍ରଦାନ କରିଥାଏ.
-1+168=167 -2+84=82 -3+56=53 -4+42=38 -6+28=22 -7+24=17 -8+21=13 -12+14=2
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-8 b=21
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 13 ପ୍ରଦାନ କରିଥାଏ.
\left(12x^{2}-8x\right)+\left(21x-14\right)
\left(12x^{2}-8x\right)+\left(21x-14\right) ଭାବରେ 12x^{2}+13x-14 ପୁନଃ ଲେଖନ୍ତୁ.
4x\left(3x-2\right)+7\left(3x-2\right)
ପ୍ରଥମଟିରେ 4x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 7 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(3x-2\right)\left(4x+7\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 3x-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{2}{3} x=-\frac{7}{4}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 3x-2=0 ଏବଂ 4x+7=0 ସମାଧାନ କରନ୍ତୁ.
12x^{2}+13x-14=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-13±\sqrt{13^{2}-4\times 12\left(-14\right)}}{2\times 12}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 12, b ପାଇଁ 13, ଏବଂ c ପାଇଁ -14 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-13±\sqrt{169-4\times 12\left(-14\right)}}{2\times 12}
ବର୍ଗ 13.
x=\frac{-13±\sqrt{169-48\left(-14\right)}}{2\times 12}
-4 କୁ 12 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-13±\sqrt{169+672}}{2\times 12}
-48 କୁ -14 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-13±\sqrt{841}}{2\times 12}
169 କୁ 672 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-13±29}{2\times 12}
841 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-13±29}{24}
2 କୁ 12 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{16}{24}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-13±29}{24} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -13 କୁ 29 ସହ ଯୋଡନ୍ତୁ.
x=\frac{2}{3}
8 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{16}{24} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{42}{24}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-13±29}{24} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -13 ରୁ 29 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{7}{4}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-42}{24} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{2}{3} x=-\frac{7}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
12x^{2}+13x-14=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
12x^{2}+13x-14-\left(-14\right)=-\left(-14\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 14 ଯୋଡନ୍ତୁ.
12x^{2}+13x=-\left(-14\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -14 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
12x^{2}+13x=14
0 ରୁ -14 ବିୟୋଗ କରନ୍ତୁ.
\frac{12x^{2}+13x}{12}=\frac{14}{12}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 12 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{13}{12}x=\frac{14}{12}
12 ଦ୍ୱାରା ବିଭାଜନ କରିବା 12 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+\frac{13}{12}x=\frac{7}{6}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{14}{12} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{13}{12}x+\left(\frac{13}{24}\right)^{2}=\frac{7}{6}+\left(\frac{13}{24}\right)^{2}
\frac{13}{24} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{13}{12} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{13}{24} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{13}{12}x+\frac{169}{576}=\frac{7}{6}+\frac{169}{576}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{13}{24} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{13}{12}x+\frac{169}{576}=\frac{841}{576}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{169}{576} ସହିତ \frac{7}{6} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{13}{24}\right)^{2}=\frac{841}{576}
ଗୁଣନୀୟକ x^{2}+\frac{13}{12}x+\frac{169}{576}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{13}{24}\right)^{2}}=\sqrt{\frac{841}{576}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{13}{24}=\frac{29}{24} x+\frac{13}{24}=-\frac{29}{24}
ସରଳୀକୃତ କରିବା.
x=\frac{2}{3} x=-\frac{7}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{13}{24} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}