x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{3 \sqrt{33} - 15}{2} \approx 1.11684397
x=\frac{-3\sqrt{33}-15}{2}\approx -16.11684397
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
60x+4x^{2}-72=0
60x ପାଇବାକୁ 100x ଏବଂ -40x ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}+60x-72=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-60±\sqrt{60^{2}-4\times 4\left(-72\right)}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ 60, ଏବଂ c ପାଇଁ -72 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-60±\sqrt{3600-4\times 4\left(-72\right)}}{2\times 4}
ବର୍ଗ 60.
x=\frac{-60±\sqrt{3600-16\left(-72\right)}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-60±\sqrt{3600+1152}}{2\times 4}
-16 କୁ -72 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-60±\sqrt{4752}}{2\times 4}
3600 କୁ 1152 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-60±12\sqrt{33}}{2\times 4}
4752 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-60±12\sqrt{33}}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{12\sqrt{33}-60}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-60±12\sqrt{33}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -60 କୁ 12\sqrt{33} ସହ ଯୋଡନ୍ତୁ.
x=\frac{3\sqrt{33}-15}{2}
-60+12\sqrt{33} କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-12\sqrt{33}-60}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-60±12\sqrt{33}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -60 ରୁ 12\sqrt{33} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-3\sqrt{33}-15}{2}
-60-12\sqrt{33} କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{3\sqrt{33}-15}{2} x=\frac{-3\sqrt{33}-15}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
60x+4x^{2}-72=0
60x ପାଇବାକୁ 100x ଏବଂ -40x ସମ୍ମେଳନ କରନ୍ତୁ.
60x+4x^{2}=72
ଉଭୟ ପାର୍ଶ୍ଵକୁ 72 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
4x^{2}+60x=72
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{4x^{2}+60x}{4}=\frac{72}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{60}{4}x=\frac{72}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+15x=\frac{72}{4}
60 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+15x=18
72 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=18+\left(\frac{15}{2}\right)^{2}
\frac{15}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 15 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{15}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+15x+\frac{225}{4}=18+\frac{225}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{15}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+15x+\frac{225}{4}=\frac{297}{4}
18 କୁ \frac{225}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{15}{2}\right)^{2}=\frac{297}{4}
ଗୁଣନୀୟକ x^{2}+15x+\frac{225}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{297}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{15}{2}=\frac{3\sqrt{33}}{2} x+\frac{15}{2}=-\frac{3\sqrt{33}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{3\sqrt{33}-15}{2} x=\frac{-3\sqrt{33}-15}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{15}{2} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}