ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

100x^{2}-50x+18=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 100\times 18}}{2\times 100}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 100, b ପାଇଁ -50, ଏବଂ c ପାଇଁ 18 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 100\times 18}}{2\times 100}
ବର୍ଗ -50.
x=\frac{-\left(-50\right)±\sqrt{2500-400\times 18}}{2\times 100}
-4 କୁ 100 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-50\right)±\sqrt{2500-7200}}{2\times 100}
-400 କୁ 18 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-50\right)±\sqrt{-4700}}{2\times 100}
2500 କୁ -7200 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-50\right)±10\sqrt{47}i}{2\times 100}
-4700 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{50±10\sqrt{47}i}{2\times 100}
-50 ର ବିପରୀତ ହେଉଛି 50.
x=\frac{50±10\sqrt{47}i}{200}
2 କୁ 100 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{50+10\sqrt{47}i}{200}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{50±10\sqrt{47}i}{200} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 50 କୁ 10i\sqrt{47} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{47}i}{20}+\frac{1}{4}
50+10i\sqrt{47} କୁ 200 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-10\sqrt{47}i+50}{200}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{50±10\sqrt{47}i}{200} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 50 ରୁ 10i\sqrt{47} ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}
50-10i\sqrt{47} କୁ 200 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{47}i}{20}+\frac{1}{4} x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
100x^{2}-50x+18=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
100x^{2}-50x+18-18=-18
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 18 ବିୟୋଗ କରନ୍ତୁ.
100x^{2}-50x=-18
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 18 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{100x^{2}-50x}{100}=-\frac{18}{100}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 100 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{50}{100}\right)x=-\frac{18}{100}
100 ଦ୍ୱାରା ବିଭାଜନ କରିବା 100 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{1}{2}x=-\frac{18}{100}
50 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-50}{100} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{1}{2}x=-\frac{9}{50}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-18}{100} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{9}{50}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{1}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{9}{50}+\frac{1}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{47}{400}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{16} ସହିତ -\frac{9}{50} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{1}{4}\right)^{2}=-\frac{47}{400}
ଗୁଣନୀୟକ x^{2}-\frac{1}{2}x+\frac{1}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{47}{400}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{4}=\frac{\sqrt{47}i}{20} x-\frac{1}{4}=-\frac{\sqrt{47}i}{20}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{47}i}{20}+\frac{1}{4} x=-\frac{\sqrt{47}i}{20}+\frac{1}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{4} ଯୋଡନ୍ତୁ.