t ପାଇଁ ସମାଧାନ କରନ୍ତୁ
t = \frac{50 \sqrt{2} - 10}{49} \approx 1.238993431
t=\frac{-50\sqrt{2}-10}{49}\approx -1.647156696
କ୍ୱିଜ୍
Quadratic Equation
5 ଟି ପ୍ରଶ୍ନ ଏହି ପରି ଅଟେ:
100 = 20 t + \frac { 1 } { 2 } \times 98 t ^ { 2 }
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
100=20t+49t^{2}
49 ପ୍ରାପ୍ତ କରିବାକୁ \frac{1}{2} ଏବଂ 98 ଗୁଣନ କରନ୍ତୁ.
20t+49t^{2}=100
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
20t+49t^{2}-100=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 100 ବିୟୋଗ କରନ୍ତୁ.
49t^{2}+20t-100=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
t=\frac{-20±\sqrt{20^{2}-4\times 49\left(-100\right)}}{2\times 49}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 49, b ପାଇଁ 20, ଏବଂ c ପାଇଁ -100 ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-20±\sqrt{400-4\times 49\left(-100\right)}}{2\times 49}
ବର୍ଗ 20.
t=\frac{-20±\sqrt{400-196\left(-100\right)}}{2\times 49}
-4 କୁ 49 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-20±\sqrt{400+19600}}{2\times 49}
-196 କୁ -100 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-20±\sqrt{20000}}{2\times 49}
400 କୁ 19600 ସହ ଯୋଡନ୍ତୁ.
t=\frac{-20±100\sqrt{2}}{2\times 49}
20000 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
t=\frac{-20±100\sqrt{2}}{98}
2 କୁ 49 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{100\sqrt{2}-20}{98}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{-20±100\sqrt{2}}{98} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -20 କୁ 100\sqrt{2} ସହ ଯୋଡନ୍ତୁ.
t=\frac{50\sqrt{2}-10}{49}
-20+100\sqrt{2} କୁ 98 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t=\frac{-100\sqrt{2}-20}{98}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{-20±100\sqrt{2}}{98} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -20 ରୁ 100\sqrt{2} ବିୟୋଗ କରନ୍ତୁ.
t=\frac{-50\sqrt{2}-10}{49}
-20-100\sqrt{2} କୁ 98 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t=\frac{50\sqrt{2}-10}{49} t=\frac{-50\sqrt{2}-10}{49}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
100=20t+49t^{2}
49 ପ୍ରାପ୍ତ କରିବାକୁ \frac{1}{2} ଏବଂ 98 ଗୁଣନ କରନ୍ତୁ.
20t+49t^{2}=100
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
49t^{2}+20t=100
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{49t^{2}+20t}{49}=\frac{100}{49}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 49 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}+\frac{20}{49}t=\frac{100}{49}
49 ଦ୍ୱାରା ବିଭାଜନ କରିବା 49 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
t^{2}+\frac{20}{49}t+\left(\frac{10}{49}\right)^{2}=\frac{100}{49}+\left(\frac{10}{49}\right)^{2}
\frac{10}{49} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{20}{49} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{10}{49} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
t^{2}+\frac{20}{49}t+\frac{100}{2401}=\frac{100}{49}+\frac{100}{2401}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{10}{49} ବର୍ଗ ବାହାର କରନ୍ତୁ.
t^{2}+\frac{20}{49}t+\frac{100}{2401}=\frac{5000}{2401}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{100}{2401} ସହିତ \frac{100}{49} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(t+\frac{10}{49}\right)^{2}=\frac{5000}{2401}
ଗୁଣନୀୟକ t^{2}+\frac{20}{49}t+\frac{100}{2401}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(t+\frac{10}{49}\right)^{2}}=\sqrt{\frac{5000}{2401}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
t+\frac{10}{49}=\frac{50\sqrt{2}}{49} t+\frac{10}{49}=-\frac{50\sqrt{2}}{49}
ସରଳୀକୃତ କରିବା.
t=\frac{50\sqrt{2}-10}{49} t=\frac{-50\sqrt{2}-10}{49}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{10}{49} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}