ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

10x^{2}+3x-3=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-3±\sqrt{3^{2}-4\times 10\left(-3\right)}}{2\times 10}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 10, b ପାଇଁ 3, ଏବଂ c ପାଇଁ -3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-3±\sqrt{9-4\times 10\left(-3\right)}}{2\times 10}
ବର୍ଗ 3.
x=\frac{-3±\sqrt{9-40\left(-3\right)}}{2\times 10}
-4 କୁ 10 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-3±\sqrt{9+120}}{2\times 10}
-40 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-3±\sqrt{129}}{2\times 10}
9 କୁ 120 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-3±\sqrt{129}}{20}
2 କୁ 10 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{129}-3}{20}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-3±\sqrt{129}}{20} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -3 କୁ \sqrt{129} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{129}-3}{20}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-3±\sqrt{129}}{20} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -3 ରୁ \sqrt{129} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{129}-3}{20} x=\frac{-\sqrt{129}-3}{20}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
10x^{2}+3x-3=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
10x^{2}+3x-3-\left(-3\right)=-\left(-3\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3 ଯୋଡନ୍ତୁ.
10x^{2}+3x=-\left(-3\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -3 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
10x^{2}+3x=3
0 ରୁ -3 ବିୟୋଗ କରନ୍ତୁ.
\frac{10x^{2}+3x}{10}=\frac{3}{10}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{3}{10}x=\frac{3}{10}
10 ଦ୍ୱାରା ବିଭାଜନ କରିବା 10 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{3}{10}x+\left(\frac{3}{20}\right)^{2}=\frac{3}{10}+\left(\frac{3}{20}\right)^{2}
\frac{3}{20} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{3}{10} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{20} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{3}{10}x+\frac{9}{400}=\frac{3}{10}+\frac{9}{400}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{20} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{3}{10}x+\frac{9}{400}=\frac{129}{400}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{9}{400} ସହିତ \frac{3}{10} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{3}{20}\right)^{2}=\frac{129}{400}
ଗୁଣନୀୟକ x^{2}+\frac{3}{10}x+\frac{9}{400}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{3}{20}\right)^{2}}=\sqrt{\frac{129}{400}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{3}{20}=\frac{\sqrt{129}}{20} x+\frac{3}{20}=-\frac{\sqrt{129}}{20}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{129}-3}{20} x=\frac{-\sqrt{129}-3}{20}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{20} ବିୟୋଗ କରନ୍ତୁ.