ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

10\times 18=x\left(3+x\right)
18 ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ 8 ଯୋଗ କରନ୍ତୁ.
180=x\left(3+x\right)
180 ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ 18 ଗୁଣନ କରନ୍ତୁ.
180=3x+x^{2}
x କୁ 3+x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x+x^{2}=180
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
3x+x^{2}-180=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 180 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+3x-180=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-3±\sqrt{3^{2}-4\left(-180\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 3, ଏବଂ c ପାଇଁ -180 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-3±\sqrt{9-4\left(-180\right)}}{2}
ବର୍ଗ 3.
x=\frac{-3±\sqrt{9+720}}{2}
-4 କୁ -180 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-3±\sqrt{729}}{2}
9 କୁ 720 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-3±27}{2}
729 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{24}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-3±27}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -3 କୁ 27 ସହ ଯୋଡନ୍ତୁ.
x=12
24 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{30}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-3±27}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -3 ରୁ 27 ବିୟୋଗ କରନ୍ତୁ.
x=-15
-30 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=12 x=-15
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
10\times 18=x\left(3+x\right)
18 ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ 8 ଯୋଗ କରନ୍ତୁ.
180=x\left(3+x\right)
180 ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ 18 ଗୁଣନ କରନ୍ତୁ.
180=3x+x^{2}
x କୁ 3+x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x+x^{2}=180
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x^{2}+3x=180
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=180+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 3 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+3x+\frac{9}{4}=180+\frac{9}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+3x+\frac{9}{4}=\frac{729}{4}
180 କୁ \frac{9}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{3}{2}\right)^{2}=\frac{729}{4}
ଗୁଣକ x^{2}+3x+\frac{9}{4}. ସାଧାରଣରେ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ଯଥାର୍ଥ ବର୍ଗ ହୋଇଥାଏ, ଏହା ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ରୂପେ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{729}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{3}{2}=\frac{27}{2} x+\frac{3}{2}=-\frac{27}{2}
ସରଳୀକୃତ କରିବା.
x=12 x=-15
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{2} ବିୟୋଗ କରନ୍ତୁ.