ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

10x^{2}-13x+63=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 10\times 63}}{2\times 10}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 10, b ପାଇଁ -13, ଏବଂ c ପାଇଁ 63 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 10\times 63}}{2\times 10}
ବର୍ଗ -13.
x=\frac{-\left(-13\right)±\sqrt{169-40\times 63}}{2\times 10}
-4 କୁ 10 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-13\right)±\sqrt{169-2520}}{2\times 10}
-40 କୁ 63 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-13\right)±\sqrt{-2351}}{2\times 10}
169 କୁ -2520 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-13\right)±\sqrt{2351}i}{2\times 10}
-2351 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{13±\sqrt{2351}i}{2\times 10}
-13 ର ବିପରୀତ ହେଉଛି 13.
x=\frac{13±\sqrt{2351}i}{20}
2 କୁ 10 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{13+\sqrt{2351}i}{20}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{13±\sqrt{2351}i}{20} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 13 କୁ i\sqrt{2351} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{2351}i+13}{20}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{13±\sqrt{2351}i}{20} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 13 ରୁ i\sqrt{2351} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{13+\sqrt{2351}i}{20} x=\frac{-\sqrt{2351}i+13}{20}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
10x^{2}-13x+63=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
10x^{2}-13x+63-63=-63
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 63 ବିୟୋଗ କରନ୍ତୁ.
10x^{2}-13x=-63
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 63 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{10x^{2}-13x}{10}=-\frac{63}{10}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{13}{10}x=-\frac{63}{10}
10 ଦ୍ୱାରା ବିଭାଜନ କରିବା 10 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{13}{10}x+\left(-\frac{13}{20}\right)^{2}=-\frac{63}{10}+\left(-\frac{13}{20}\right)^{2}
-\frac{13}{20} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{13}{10} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{13}{20} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{13}{10}x+\frac{169}{400}=-\frac{63}{10}+\frac{169}{400}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{13}{20} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{13}{10}x+\frac{169}{400}=-\frac{2351}{400}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{169}{400} ସହିତ -\frac{63}{10} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{13}{20}\right)^{2}=-\frac{2351}{400}
ଗୁଣନୀୟକ x^{2}-\frac{13}{10}x+\frac{169}{400}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{13}{20}\right)^{2}}=\sqrt{-\frac{2351}{400}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{13}{20}=\frac{\sqrt{2351}i}{20} x-\frac{13}{20}=-\frac{\sqrt{2351}i}{20}
ସରଳୀକୃତ କରିବା.
x=\frac{13+\sqrt{2351}i}{20} x=\frac{-\sqrt{2351}i+13}{20}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{13}{20} ଯୋଡନ୍ତୁ.