ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

1\left(4x^{2}-20x+25\right)-0\times 9\left(x+4\right)^{2}=0
\left(2x-5\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-20x+25-0\times 9\left(x+4\right)^{2}=0
1 କୁ 4x^{2}-20x+25 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-20x+25-0\left(x+4\right)^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 9 ଗୁଣନ କରନ୍ତୁ.
4x^{2}-20x+25-0\left(x^{2}+8x+16\right)=0
\left(x+4\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-20x+25-0=0
ଯାହାକିଛିର ଶୂନ୍ୟ ଗୁଣା ଶୂନ୍ୟ ଦେଇଥାଏ.
4x^{2}-20x+25=0
ପଦଗୁଡିକୁ ପୁନଃକ୍ରମରେ ରଖନ୍ତୁ.
a+b=-20 ab=4\times 25=100
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 4x^{2}+ax+bx+25 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 100 ପ୍ରଦାନ କରିଥାଏ.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-10 b=-10
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -20 ପ୍ରଦାନ କରିଥାଏ.
\left(4x^{2}-10x\right)+\left(-10x+25\right)
\left(4x^{2}-10x\right)+\left(-10x+25\right) ଭାବରେ 4x^{2}-20x+25 ପୁନଃ ଲେଖନ୍ତୁ.
2x\left(2x-5\right)-5\left(2x-5\right)
ପ୍ରଥମଟିରେ 2x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2x-5\right)\left(2x-5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2x-5 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2x-5\right)^{2}
ବାଇନମିଆଲ୍‌ ବର୍ଗ ଭାବେ ପୁଣି ଲେଖନ୍ତୁ.
x=\frac{5}{2}
ସମୀକରଣ ସମାଧାନ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 2x-5=0 ସମାଧାନ କରନ୍ତୁ.
1\left(4x^{2}-20x+25\right)-0\times 9\left(x+4\right)^{2}=0
\left(2x-5\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-20x+25-0\times 9\left(x+4\right)^{2}=0
1 କୁ 4x^{2}-20x+25 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-20x+25-0\left(x+4\right)^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 9 ଗୁଣନ କରନ୍ତୁ.
4x^{2}-20x+25-0\left(x^{2}+8x+16\right)=0
\left(x+4\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-20x+25-0=0
ଯାହାକିଛିର ଶୂନ୍ୟ ଗୁଣା ଶୂନ୍ୟ ଦେଇଥାଏ.
4x^{2}-20x+25=0
ପଦଗୁଡିକୁ ପୁନଃକ୍ରମରେ ରଖନ୍ତୁ.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\times 25}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ -20, ଏବଂ c ପାଇଁ 25 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\times 25}}{2\times 4}
ବର୍ଗ -20.
x=\frac{-\left(-20\right)±\sqrt{400-16\times 25}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-20\right)±\sqrt{400-400}}{2\times 4}
-16 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-20\right)±\sqrt{0}}{2\times 4}
400 କୁ -400 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{-20}{2\times 4}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{20}{2\times 4}
-20 ର ବିପରୀତ ହେଉଛି 20.
x=\frac{20}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{5}{2}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{20}{8} ହ୍ରାସ କରନ୍ତୁ.
1\left(4x^{2}-20x+25\right)-0\times 9\left(x+4\right)^{2}=0
\left(2x-5\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-20x+25-0\times 9\left(x+4\right)^{2}=0
1 କୁ 4x^{2}-20x+25 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-20x+25-0\left(x+4\right)^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 9 ଗୁଣନ କରନ୍ତୁ.
4x^{2}-20x+25-0\left(x^{2}+8x+16\right)=0
\left(x+4\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-20x+25-0=0
ଯାହାକିଛିର ଶୂନ୍ୟ ଗୁଣା ଶୂନ୍ୟ ଦେଇଥାଏ.
4x^{2}-20x+25=0+0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 0 ଯୋଡନ୍ତୁ.
4x^{2}-20x+25=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 0 ଯୋଗ କରନ୍ତୁ.
4x^{2}-20x=-25
ଉଭୟ ପାର୍ଶ୍ୱରୁ 25 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
\frac{4x^{2}-20x}{4}=-\frac{25}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{20}{4}\right)x=-\frac{25}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-5x=-\frac{25}{4}
-20 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{25}{4}+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -5 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-5x+\frac{25}{4}=\frac{-25+25}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-5x+\frac{25}{4}=0
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{25}{4} ସହିତ -\frac{25}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{5}{2}\right)^{2}=0
ଗୁଣନୀୟକ x^{2}-5x+\frac{25}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{0}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{5}{2}=0 x-\frac{5}{2}=0
ସରଳୀକୃତ କରିବା.
x=\frac{5}{2} x=\frac{5}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{2} ଯୋଡନ୍ତୁ.
x=\frac{5}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି. ସମାଧାନଗୁଡିକ ସମାନ ଅଛି.