ଗୁଣକ
\left(a+1\right)\left(a+10\right)
ମୂଲ୍ୟାୟନ କରିବା
\left(a+1\right)\left(a+10\right)
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
p+q=11 pq=1\times 10=10
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି a^{2}+pa+qa+10 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. p ଏବଂ q ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,10 2,5
ଯେହେତୁ pq ଧନାତ୍ମକ ଅଟେ, p ଏବଂ q ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁp+q ଧନାତ୍ମକ ଅଟେ, ଉଭୟ p ଏବଂ q ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 10 ପ୍ରଦାନ କରିଥାଏ.
1+10=11 2+5=7
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
p=1 q=10
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 11 ପ୍ରଦାନ କରିଥାଏ.
\left(a^{2}+a\right)+\left(10a+10\right)
\left(a^{2}+a\right)+\left(10a+10\right) ଭାବରେ a^{2}+11a+10 ପୁନଃ ଲେଖନ୍ତୁ.
a\left(a+1\right)+10\left(a+1\right)
ପ୍ରଥମଟିରେ a ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 10 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(a+1\right)\left(a+10\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ a+1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
a^{2}+11a+10=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
a=\frac{-11±\sqrt{11^{2}-4\times 10}}{2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
a=\frac{-11±\sqrt{121-4\times 10}}{2}
ବର୍ଗ 11.
a=\frac{-11±\sqrt{121-40}}{2}
-4 କୁ 10 ଥର ଗୁଣନ କରନ୍ତୁ.
a=\frac{-11±\sqrt{81}}{2}
121 କୁ -40 ସହ ଯୋଡନ୍ତୁ.
a=\frac{-11±9}{2}
81 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
a=-\frac{2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{-11±9}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -11 କୁ 9 ସହ ଯୋଡନ୍ତୁ.
a=-1
-2 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=-\frac{20}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{-11±9}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -11 ରୁ 9 ବିୟୋଗ କରନ୍ତୁ.
a=-10
-20 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a^{2}+11a+10=\left(a-\left(-1\right)\right)\left(a-\left(-10\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ -1 ଏବଂ x_{2} ପାଇଁ -10 ପ୍ରତିବଦଳ କରନ୍ତୁ.
a^{2}+11a+10=\left(a+1\right)\left(a+10\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}