ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x\left(x+1\right)+x\times 5x=5
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -1,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ x\left(x+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x+1,x^{2}+x ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x^{2}+x+x\times 5x=5
x କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+x+x^{2}\times 5=5
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
6x^{2}+x=5
6x^{2} ପାଇବାକୁ x^{2} ଏବଂ x^{2}\times 5 ସମ୍ମେଳନ କରନ୍ତୁ.
6x^{2}+x-5=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
a+b=1 ab=6\left(-5\right)=-30
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 6x^{2}+ax+bx-5 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,30 -2,15 -3,10 -5,6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -30 ପ୍ରଦାନ କରିଥାଏ.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-5 b=6
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 1 ପ୍ରଦାନ କରିଥାଏ.
\left(6x^{2}-5x\right)+\left(6x-5\right)
\left(6x^{2}-5x\right)+\left(6x-5\right) ଭାବରେ 6x^{2}+x-5 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(6x-5\right)+6x-5
6x^{2}-5xରେ x ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(6x-5\right)\left(x+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 6x-5 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{5}{6} x=-1
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 6x-5=0 ଏବଂ x+1=0 ସମାଧାନ କରନ୍ତୁ.
x=\frac{5}{6}
ଭାରିଏବୁଲ୍‌ x -1 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
x\left(x+1\right)+x\times 5x=5
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -1,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ x\left(x+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x+1,x^{2}+x ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x^{2}+x+x\times 5x=5
x କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+x+x^{2}\times 5=5
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
6x^{2}+x=5
6x^{2} ପାଇବାକୁ x^{2} ଏବଂ x^{2}\times 5 ସମ୍ମେଳନ କରନ୍ତୁ.
6x^{2}+x-5=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-5\right)}}{2\times 6}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 6, b ପାଇଁ 1, ଏବଂ c ପାଇଁ -5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-1±\sqrt{1-4\times 6\left(-5\right)}}{2\times 6}
ବର୍ଗ 1.
x=\frac{-1±\sqrt{1-24\left(-5\right)}}{2\times 6}
-4 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-1±\sqrt{1+120}}{2\times 6}
-24 କୁ -5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-1±\sqrt{121}}{2\times 6}
1 କୁ 120 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-1±11}{2\times 6}
121 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-1±11}{12}
2 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{10}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-1±11}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -1 କୁ 11 ସହ ଯୋଡନ୍ତୁ.
x=\frac{5}{6}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{10}{12} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{12}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-1±11}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -1 ରୁ 11 ବିୟୋଗ କରନ୍ତୁ.
x=-1
-12 କୁ 12 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{5}{6} x=-1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x=\frac{5}{6}
ଭାରିଏବୁଲ୍‌ x -1 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
x\left(x+1\right)+x\times 5x=5
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -1,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ x\left(x+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x+1,x^{2}+x ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x^{2}+x+x\times 5x=5
x କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+x+x^{2}\times 5=5
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
6x^{2}+x=5
6x^{2} ପାଇବାକୁ x^{2} ଏବଂ x^{2}\times 5 ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{6x^{2}+x}{6}=\frac{5}{6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{1}{6}x=\frac{5}{6}
6 ଦ୍ୱାରା ବିଭାଜନ କରିବା 6 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=\frac{5}{6}+\left(\frac{1}{12}\right)^{2}
\frac{1}{12} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{1}{6} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{12} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{5}{6}+\frac{1}{144}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{12} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{121}{144}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{144} ସହିତ \frac{5}{6} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{1}{12}\right)^{2}=\frac{121}{144}
ଗୁଣନୀୟକ x^{2}+\frac{1}{6}x+\frac{1}{144}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{\frac{121}{144}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{12}=\frac{11}{12} x+\frac{1}{12}=-\frac{11}{12}
ସରଳୀକୃତ କରିବା.
x=\frac{5}{6} x=-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{12} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{5}{6}
ଭାରିଏବୁଲ୍‌ x -1 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.