t ପାଇଁ ସମାଧାନ କରନ୍ତୁ
t=\frac{301\log_{2}\left(\frac{5}{17}\right)}{20}+30.1\approx 3.528702067
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{0.85}{1}=0.5^{\frac{t}{15.05}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{85}{100}=0.5^{\frac{t}{15.05}}
ଉଭୟ ଲବ ଏବଂ ହରକୁ 100 ଦ୍ୱାରା ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{0.85}{1} ପ୍ରସାରଣ କରନ୍ତୁ.
\frac{17}{20}=0.5^{\frac{t}{15.05}}
5 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{85}{100} ହ୍ରାସ କରନ୍ତୁ.
0.5^{\frac{t}{15.05}}=\frac{17}{20}
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
0.5^{\frac{20}{301}t}=0.85
ସମୀକରଣକୁ ସମାଧାନ କରିବା ପାଇଁ ଘାତାଙ୍କ ଏବଂ ଲଗାରିଦମ୍ଗୁଡିକ ନିୟମଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\log(0.5^{\frac{20}{301}t})=\log(0.85)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ଲଗାରିଦିମ୍ ବାହାର କରନ୍ତୁ.
\frac{20}{301}t\log(0.5)=\log(0.85)
ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି ହୋଇଥିବା ଏକ ସଂଖ୍ୟାର ଲଗାରିଦମ୍ ଏହି ସଂଖ୍ୟାର ଲଗାରିଦମ୍ର ପାୱାର୍ ଗୁଣା ହୋଇଥାଏ.
\frac{20}{301}t=\frac{\log(0.85)}{\log(0.5)}
ଉଭୟ ପାର୍ଶ୍ୱକୁ \log(0.5) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{20}{301}t=\log_{0.5}\left(0.85\right)
ମୂଳ-ପରିବର୍ତ୍ତନ କରିବା ସୂତ୍ର ଅନୁସାରେ \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=-\frac{\frac{\ln(\frac{17}{20})}{\ln(2)}}{\frac{20}{301}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{20}{301} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}