ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{1}{2}x^{2}+8x-2=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-8±\sqrt{8^{2}-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ \frac{1}{2}, b ପାଇଁ 8, ଏବଂ c ପାଇଁ -2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-8±\sqrt{64-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
ବର୍ଗ 8.
x=\frac{-8±\sqrt{64-2\left(-2\right)}}{2\times \frac{1}{2}}
-4 କୁ \frac{1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-8±\sqrt{64+4}}{2\times \frac{1}{2}}
-2 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-8±\sqrt{68}}{2\times \frac{1}{2}}
64 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-8±2\sqrt{17}}{2\times \frac{1}{2}}
68 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-8±2\sqrt{17}}{1}
2 କୁ \frac{1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{17}-8}{1}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-8±2\sqrt{17}}{1} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -8 କୁ 2\sqrt{17} ସହ ଯୋଡନ୍ତୁ.
x=2\sqrt{17}-8
-8+2\sqrt{17} କୁ 1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{17}-8}{1}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-8±2\sqrt{17}}{1} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -8 ରୁ 2\sqrt{17} ବିୟୋଗ କରନ୍ତୁ.
x=-2\sqrt{17}-8
-8-2\sqrt{17} କୁ 1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=2\sqrt{17}-8 x=-2\sqrt{17}-8
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\frac{1}{2}x^{2}+8x-2=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{1}{2}x^{2}+8x-2-\left(-2\right)=-\left(-2\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
\frac{1}{2}x^{2}+8x=-\left(-2\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -2 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{1}{2}x^{2}+8x=2
0 ରୁ -2 ବିୟୋଗ କରନ୍ତୁ.
\frac{\frac{1}{2}x^{2}+8x}{\frac{1}{2}}=\frac{2}{\frac{1}{2}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x^{2}+\frac{8}{\frac{1}{2}}x=\frac{2}{\frac{1}{2}}
\frac{1}{2} ଦ୍ୱାରା ବିଭାଜନ କରିବା \frac{1}{2} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+16x=\frac{2}{\frac{1}{2}}
\frac{1}{2} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା 8 କୁ ଗୁଣନ କରି 8 କୁ \frac{1}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+16x=4
\frac{1}{2} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା 2 କୁ ଗୁଣନ କରି 2 କୁ \frac{1}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+16x+8^{2}=4+8^{2}
8 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 16 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 8 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+16x+64=4+64
ବର୍ଗ 8.
x^{2}+16x+64=68
4 କୁ 64 ସହ ଯୋଡନ୍ତୁ.
\left(x+8\right)^{2}=68
ଗୁଣନୀୟକ x^{2}+16x+64. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+8\right)^{2}}=\sqrt{68}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+8=2\sqrt{17} x+8=-2\sqrt{17}
ସରଳୀକୃତ କରିବା.
x=2\sqrt{17}-8 x=-2\sqrt{17}-8
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.