ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{1}{2}x^{2}+4x-2=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-4±\sqrt{4^{2}-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ \frac{1}{2}, b ପାଇଁ 4, ଏବଂ c ପାଇଁ -2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-4±\sqrt{16-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
ବର୍ଗ 4.
x=\frac{-4±\sqrt{16-2\left(-2\right)}}{2\times \frac{1}{2}}
-4 କୁ \frac{1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-4±\sqrt{16+4}}{2\times \frac{1}{2}}
-2 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-4±\sqrt{20}}{2\times \frac{1}{2}}
16 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-4±2\sqrt{5}}{2\times \frac{1}{2}}
20 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-4±2\sqrt{5}}{1}
2 କୁ \frac{1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{5}-4}{1}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-4±2\sqrt{5}}{1} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -4 କୁ 2\sqrt{5} ସହ ଯୋଡନ୍ତୁ.
x=2\sqrt{5}-4
-4+2\sqrt{5} କୁ 1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{5}-4}{1}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-4±2\sqrt{5}}{1} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -4 ରୁ 2\sqrt{5} ବିୟୋଗ କରନ୍ତୁ.
x=-2\sqrt{5}-4
-4-2\sqrt{5} କୁ 1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=2\sqrt{5}-4 x=-2\sqrt{5}-4
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\frac{1}{2}x^{2}+4x-2=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{1}{2}x^{2}+4x-2-\left(-2\right)=-\left(-2\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
\frac{1}{2}x^{2}+4x=-\left(-2\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -2 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{1}{2}x^{2}+4x=2
0 ରୁ -2 ବିୟୋଗ କରନ୍ତୁ.
\frac{\frac{1}{2}x^{2}+4x}{\frac{1}{2}}=\frac{2}{\frac{1}{2}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x^{2}+\frac{4}{\frac{1}{2}}x=\frac{2}{\frac{1}{2}}
\frac{1}{2} ଦ୍ୱାରା ବିଭାଜନ କରିବା \frac{1}{2} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+8x=\frac{2}{\frac{1}{2}}
\frac{1}{2} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା 4 କୁ ଗୁଣନ କରି 4 କୁ \frac{1}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+8x=4
\frac{1}{2} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା 2 କୁ ଗୁଣନ କରି 2 କୁ \frac{1}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+8x+4^{2}=4+4^{2}
4 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 8 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 4 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+8x+16=4+16
ବର୍ଗ 4.
x^{2}+8x+16=20
4 କୁ 16 ସହ ଯୋଡନ୍ତୁ.
\left(x+4\right)^{2}=20
ଗୁଣନୀୟକ x^{2}+8x+16. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+4\right)^{2}}=\sqrt{20}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+4=2\sqrt{5} x+4=-2\sqrt{5}
ସରଳୀକୃତ କରିବା.
x=2\sqrt{5}-4 x=-2\sqrt{5}-4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.