ମୂଲ୍ୟାୟନ କରିବା
-\frac{50721}{14000}\approx -3.622928571
ଗୁଣକ
-\frac{50721}{14000} = -3\frac{8721}{14000} = -3.6229285714285715
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
0.3\left(\frac{239}{280}-18.81+5.88\right)
ଉଭୟ ଲବ ଏବଂ ହରକୁ 10 ଦ୍ୱାରା ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{23.9}{28} ପ୍ରସାରଣ କରନ୍ତୁ.
0.3\left(\frac{239}{280}-\frac{1881}{100}+5.88\right)
ଦଶମିକ ସଂଖ୍ୟା 18.81 କୁ ଅଂଶ \frac{1881}{100} କୁ ରୂପାନ୍ତର କରନ୍ତୁ.
0.3\left(\frac{1195}{1400}-\frac{26334}{1400}+5.88\right)
280 ଏବଂ 100 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 1400. \frac{239}{280} ଏବଂ \frac{1881}{100} କୁ 1400 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
0.3\left(\frac{1195-26334}{1400}+5.88\right)
ଯେହେତୁ \frac{1195}{1400} ଏବଂ \frac{26334}{1400} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
0.3\left(-\frac{25139}{1400}+5.88\right)
-25139 ପ୍ରାପ୍ତ କରିବାକୁ 1195 ଏବଂ 26334 ବିୟୋଗ କରନ୍ତୁ.
0.3\left(-\frac{25139}{1400}+\frac{147}{25}\right)
ଦଶମିକ ସଂଖ୍ୟା 5.88 କୁ ଅଂଶ \frac{588}{100} କୁ ରୂପାନ୍ତର କରନ୍ତୁ. 4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{588}{100} ହ୍ରାସ କରନ୍ତୁ.
0.3\left(-\frac{25139}{1400}+\frac{8232}{1400}\right)
1400 ଏବଂ 25 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 1400. -\frac{25139}{1400} ଏବଂ \frac{147}{25} କୁ 1400 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
0.3\times \frac{-25139+8232}{1400}
ଯେହେତୁ -\frac{25139}{1400} ଏବଂ \frac{8232}{1400} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
0.3\left(-\frac{16907}{1400}\right)
-16907 ପ୍ରାପ୍ତ କରିବାକୁ -25139 ଏବଂ 8232 ଯୋଗ କରନ୍ତୁ.
\frac{3}{10}\left(-\frac{16907}{1400}\right)
ଦଶମିକ ସଂଖ୍ୟା 0.3 କୁ ଅଂଶ \frac{3}{10} କୁ ରୂପାନ୍ତର କରନ୍ତୁ.
\frac{3\left(-16907\right)}{10\times 1400}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{3}{10} କୁ -\frac{16907}{1400} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{-50721}{14000}
ଭଗ୍ନାଂଶ \frac{3\left(-16907\right)}{10\times 1400} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
-\frac{50721}{14000}
ଋଣାତ୍ମକ ଚିହ୍ନକୁ କାଢିଦେବା ଦ୍ୱାରା ଭଗ୍ନାଂଶ \frac{-50721}{14000} କୁ -\frac{50721}{14000} ଭାବେ ପୁଣି ଲେଖାଯାଇପାରିବ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}