T_0 ପାଇଁ ସମାଧାନ କରନ୍ତୁ
T_{0}=-\frac{375}{a\left(a-20\right)}
a\neq 20\text{ and }a\neq 0
a ପାଇଁ ସମାଧାନ କରନ୍ତୁ
a=-\frac{5\left(\sqrt{T_{0}\left(4T_{0}-15\right)}-2T_{0}\right)}{T_{0}}
a=\frac{5\left(\sqrt{T_{0}\left(4T_{0}-15\right)}+2T_{0}\right)}{T_{0}}\text{, }T_{0}<0\text{ or }T_{0}\geq \frac{15}{4}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
0.0048aT_{0}\left(20-a\right)=20\times 0.09
0.0048 ପ୍ରାପ୍ତ କରିବାକୁ 0.12 ଏବଂ 0.04 ଗୁଣନ କରନ୍ତୁ.
0.096aT_{0}-0.0048a^{2}T_{0}=20\times 0.09
0.0048aT_{0} କୁ 20-a ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
0.096aT_{0}-0.0048a^{2}T_{0}=1.8
1.8 ପ୍ରାପ୍ତ କରିବାକୁ 20 ଏବଂ 0.09 ଗୁଣନ କରନ୍ତୁ.
\left(0.096a-0.0048a^{2}\right)T_{0}=1.8
T_{0} ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(-\frac{3a^{2}}{625}+\frac{12a}{125}\right)T_{0}=1.8
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(-\frac{3a^{2}}{625}+\frac{12a}{125}\right)T_{0}}{-\frac{3a^{2}}{625}+\frac{12a}{125}}=\frac{1.8}{-\frac{3a^{2}}{625}+\frac{12a}{125}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 0.096a-0.0048a^{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
T_{0}=\frac{1.8}{-\frac{3a^{2}}{625}+\frac{12a}{125}}
0.096a-0.0048a^{2} ଦ୍ୱାରା ବିଭାଜନ କରିବା 0.096a-0.0048a^{2} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
T_{0}=\frac{9}{5a\left(-\frac{3a}{625}+0.096\right)}
1.8 କୁ 0.096a-0.0048a^{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}