ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

0=2\left(x-1\right)^{2}-8
\left(x-1\right)^{2} ପ୍ରାପ୍ତ କରିବାକୁ x-1 ଏବଂ x-1 ଗୁଣନ କରନ୍ତୁ.
0=2\left(x^{2}-2x+1\right)-8
\left(x-1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
0=2x^{2}-4x+2-8
2 କୁ x^{2}-2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
0=2x^{2}-4x-6
-6 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-4x-6=0
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x^{2}-2x-3=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a+b=-2 ab=1\left(-3\right)=-3
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx-3 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
a=-3 b=1
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. କେବଳ ଏହିଭଳି ଯୋଡା ହେଉଛି ସିଷ୍ଟମ୍‌ ସମାଧାନ.
\left(x^{2}-3x\right)+\left(x-3\right)
\left(x^{2}-3x\right)+\left(x-3\right) ଭାବରେ x^{2}-2x-3 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x-3\right)+x-3
x^{2}-3xରେ x ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-3\right)\left(x+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=3 x=-1
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-3=0 ଏବଂ x+1=0 ସମାଧାନ କରନ୍ତୁ.
0=2\left(x-1\right)^{2}-8
\left(x-1\right)^{2} ପ୍ରାପ୍ତ କରିବାକୁ x-1 ଏବଂ x-1 ଗୁଣନ କରନ୍ତୁ.
0=2\left(x^{2}-2x+1\right)-8
\left(x-1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
0=2x^{2}-4x+2-8
2 କୁ x^{2}-2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
0=2x^{2}-4x-6
-6 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-4x-6=0
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -4, ଏବଂ c ପାଇଁ -6 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
ବର୍ଗ -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-6\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 2}
-8 କୁ -6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 2}
16 କୁ 48 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-4\right)±8}{2\times 2}
64 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4±8}{2\times 2}
-4 ର ବିପରୀତ ହେଉଛି 4.
x=\frac{4±8}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{12}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±8}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 8 ସହ ଯୋଡନ୍ତୁ.
x=3
12 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{4}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±8}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
x=-1
-4 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=3 x=-1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
0=2\left(x-1\right)^{2}-8
\left(x-1\right)^{2} ପ୍ରାପ୍ତ କରିବାକୁ x-1 ଏବଂ x-1 ଗୁଣନ କରନ୍ତୁ.
0=2\left(x^{2}-2x+1\right)-8
\left(x-1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
0=2x^{2}-4x+2-8
2 କୁ x^{2}-2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
0=2x^{2}-4x-6
-6 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-4x-6=0
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
2x^{2}-4x=6
ଉଭୟ ପାର୍ଶ୍ଵକୁ 6 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\frac{2x^{2}-4x}{2}=\frac{6}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{6}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-2x=\frac{6}{2}
-4 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-2x=3
6 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-2x+1=3+1
-1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-2x+1=4
3 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x-1\right)^{2}=4
ଗୁଣନୀୟକ x^{2}-2x+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-1=2 x-1=-2
ସରଳୀକୃତ କରିବା.
x=3 x=-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.