x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{\sqrt{9465} - 21}{32} \approx 2.384007236
x=\frac{-\sqrt{9465}-21}{32}\approx -3.696507236
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
141-21x-16x^{2}=0
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
-16x^{2}-21x+141=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\left(-16\right)\times 141}}{2\left(-16\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -16, b ପାଇଁ -21, ଏବଂ c ପାଇଁ 141 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-21\right)±\sqrt{441-4\left(-16\right)\times 141}}{2\left(-16\right)}
ବର୍ଗ -21.
x=\frac{-\left(-21\right)±\sqrt{441+64\times 141}}{2\left(-16\right)}
-4 କୁ -16 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-21\right)±\sqrt{441+9024}}{2\left(-16\right)}
64 କୁ 141 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-21\right)±\sqrt{9465}}{2\left(-16\right)}
441 କୁ 9024 ସହ ଯୋଡନ୍ତୁ.
x=\frac{21±\sqrt{9465}}{2\left(-16\right)}
-21 ର ବିପରୀତ ହେଉଛି 21.
x=\frac{21±\sqrt{9465}}{-32}
2 କୁ -16 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{9465}+21}{-32}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{21±\sqrt{9465}}{-32} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 21 କୁ \sqrt{9465} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{9465}-21}{32}
21+\sqrt{9465} କୁ -32 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{21-\sqrt{9465}}{-32}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{21±\sqrt{9465}}{-32} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 21 ରୁ \sqrt{9465} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{9465}-21}{32}
21-\sqrt{9465} କୁ -32 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\sqrt{9465}-21}{32} x=\frac{\sqrt{9465}-21}{32}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
141-21x-16x^{2}=0
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
-21x-16x^{2}=-141
ଉଭୟ ପାର୍ଶ୍ୱରୁ 141 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
-16x^{2}-21x=-141
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-16x^{2}-21x}{-16}=-\frac{141}{-16}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -16 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{21}{-16}\right)x=-\frac{141}{-16}
-16 ଦ୍ୱାରା ବିଭାଜନ କରିବା -16 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+\frac{21}{16}x=-\frac{141}{-16}
-21 କୁ -16 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{21}{16}x=\frac{141}{16}
-141 କୁ -16 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{21}{16}x+\left(\frac{21}{32}\right)^{2}=\frac{141}{16}+\left(\frac{21}{32}\right)^{2}
\frac{21}{32} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{21}{16} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{21}{32} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{21}{16}x+\frac{441}{1024}=\frac{141}{16}+\frac{441}{1024}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{21}{32} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{21}{16}x+\frac{441}{1024}=\frac{9465}{1024}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{441}{1024} ସହିତ \frac{141}{16} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{21}{32}\right)^{2}=\frac{9465}{1024}
ଗୁଣନୀୟକ x^{2}+\frac{21}{16}x+\frac{441}{1024}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{21}{32}\right)^{2}}=\sqrt{\frac{9465}{1024}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{21}{32}=\frac{\sqrt{9465}}{32} x+\frac{21}{32}=-\frac{\sqrt{9465}}{32}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{9465}-21}{32} x=\frac{-\sqrt{9465}-21}{32}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{21}{32} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}