x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=2+\sqrt{5}i\approx 2+2.236067977i
x=-\sqrt{5}i+2\approx 2-2.236067977i
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
0=x^{2}-4x+9
9 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
x^{2}-4x+9=0
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 9}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -4, ଏବଂ c ପାଇଁ 9 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 9}}{2}
ବର୍ଗ -4.
x=\frac{-\left(-4\right)±\sqrt{16-36}}{2}
-4 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{-20}}{2}
16 କୁ -36 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-4\right)±2\sqrt{5}i}{2}
-20 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4±2\sqrt{5}i}{2}
-4 ର ବିପରୀତ ହେଉଛି 4.
x=\frac{4+2\sqrt{5}i}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±2\sqrt{5}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 2i\sqrt{5} ସହ ଯୋଡନ୍ତୁ.
x=2+\sqrt{5}i
4+2i\sqrt{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{5}i+4}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±2\sqrt{5}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 2i\sqrt{5} ବିୟୋଗ କରନ୍ତୁ.
x=-\sqrt{5}i+2
4-2i\sqrt{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=2+\sqrt{5}i x=-\sqrt{5}i+2
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
0=x^{2}-4x+9
9 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
x^{2}-4x+9=0
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x^{2}-4x=-9
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
x^{2}-4x+\left(-2\right)^{2}=-9+\left(-2\right)^{2}
-2 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -4 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -2 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-4x+4=-9+4
ବର୍ଗ -2.
x^{2}-4x+4=-5
-9 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
\left(x-2\right)^{2}=-5
ଗୁଣନୀୟକ x^{2}-4x+4. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-2=\sqrt{5}i x-2=-\sqrt{5}i
ସରଳୀକୃତ କରିବା.
x=2+\sqrt{5}i x=-\sqrt{5}i+2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}