ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
t ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

105t+49t^{2}=0
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
t\left(105+49t\right)=0
t ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
t=0 t=-\frac{15}{7}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, t=0 ଏବଂ 105+49t=0 ସମାଧାନ କରନ୍ତୁ.
105t+49t^{2}=0
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
49t^{2}+105t=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
t=\frac{-105±\sqrt{105^{2}}}{2\times 49}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 49, b ପାଇଁ 105, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-105±105}{2\times 49}
105^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
t=\frac{-105±105}{98}
2 କୁ 49 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{0}{98}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{-105±105}{98} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -105 କୁ 105 ସହ ଯୋଡନ୍ତୁ.
t=0
0 କୁ 98 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t=-\frac{210}{98}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{-105±105}{98} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -105 ରୁ 105 ବିୟୋଗ କରନ୍ତୁ.
t=-\frac{15}{7}
14 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-210}{98} ହ୍ରାସ କରନ୍ତୁ.
t=0 t=-\frac{15}{7}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
105t+49t^{2}=0
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
49t^{2}+105t=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{49t^{2}+105t}{49}=\frac{0}{49}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 49 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}+\frac{105}{49}t=\frac{0}{49}
49 ଦ୍ୱାରା ବିଭାଜନ କରିବା 49 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
t^{2}+\frac{15}{7}t=\frac{0}{49}
7 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{105}{49} ହ୍ରାସ କରନ୍ତୁ.
t^{2}+\frac{15}{7}t=0
0 କୁ 49 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}+\frac{15}{7}t+\left(\frac{15}{14}\right)^{2}=\left(\frac{15}{14}\right)^{2}
\frac{15}{14} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{15}{7} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{15}{14} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
t^{2}+\frac{15}{7}t+\frac{225}{196}=\frac{225}{196}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{15}{14} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(t+\frac{15}{14}\right)^{2}=\frac{225}{196}
ଗୁଣନୀୟକ t^{2}+\frac{15}{7}t+\frac{225}{196}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(t+\frac{15}{14}\right)^{2}}=\sqrt{\frac{225}{196}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
t+\frac{15}{14}=\frac{15}{14} t+\frac{15}{14}=-\frac{15}{14}
ସରଳୀକୃତ କରିବା.
t=0 t=-\frac{15}{7}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{15}{14} ବିୟୋଗ କରନ୍ତୁ.