ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

0=x^{2}-6x+9-12
\left(x-3\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
0=x^{2}-6x-3
-3 ପ୍ରାପ୍ତ କରିବାକୁ 9 ଏବଂ 12 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-6x-3=0
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -6, ଏବଂ c ପାଇଁ -3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)}}{2}
ବର୍ଗ -6.
x=\frac{-\left(-6\right)±\sqrt{36+12}}{2}
-4 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{48}}{2}
36 କୁ 12 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-6\right)±4\sqrt{3}}{2}
48 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{6±4\sqrt{3}}{2}
-6 ର ବିପରୀତ ହେଉଛି 6.
x=\frac{4\sqrt{3}+6}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{6±4\sqrt{3}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 6 କୁ 4\sqrt{3} ସହ ଯୋଡନ୍ତୁ.
x=2\sqrt{3}+3
6+4\sqrt{3} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{6-4\sqrt{3}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{6±4\sqrt{3}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 6 ରୁ 4\sqrt{3} ବିୟୋଗ କରନ୍ତୁ.
x=3-2\sqrt{3}
6-4\sqrt{3} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=2\sqrt{3}+3 x=3-2\sqrt{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
0=x^{2}-6x+9-12
\left(x-3\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
0=x^{2}-6x-3
-3 ପ୍ରାପ୍ତ କରିବାକୁ 9 ଏବଂ 12 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-6x-3=0
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x^{2}-6x=3
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
x^{2}-6x+\left(-3\right)^{2}=3+\left(-3\right)^{2}
-3 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -6 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -3 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-6x+9=3+9
ବର୍ଗ -3.
x^{2}-6x+9=12
3 କୁ 9 ସହ ଯୋଡନ୍ତୁ.
\left(x-3\right)^{2}=12
ଗୁଣନୀୟକ x^{2}-6x+9. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-3\right)^{2}}=\sqrt{12}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-3=2\sqrt{3} x-3=-2\sqrt{3}
ସରଳୀକୃତ କରିବା.
x=2\sqrt{3}+3 x=3-2\sqrt{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3 ଯୋଡନ୍ତୁ.