ଗୁଣକ
-12\left(x+1\right)\left(x+3\right)
ମୂଲ୍ୟାୟନ କରିବା
-12\left(x+1\right)\left(x+3\right)
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
12\left(-x^{2}-4x-3\right)
12 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
a+b=-4 ab=-\left(-3\right)=3
-x^{2}-4x-3କୁ ବିବେଚନା କରନ୍ତୁ. ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି -x^{2}+ax+bx-3 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
a=-1 b=-3
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. କେବଳ ଏହିଭଳି ଯୋଡା ହେଉଛି ସିଷ୍ଟମ୍ ସମାଧାନ.
\left(-x^{2}-x\right)+\left(-3x-3\right)
\left(-x^{2}-x\right)+\left(-3x-3\right) ଭାବରେ -x^{2}-4x-3 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(-x-1\right)+3\left(-x-1\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 3 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(-x-1\right)\left(x+3\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ -x-1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
12\left(-x-1\right)\left(x+3\right)
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.
-12x^{2}-48x-36=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\left(-12\right)\left(-36\right)}}{2\left(-12\right)}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-48\right)±\sqrt{2304-4\left(-12\right)\left(-36\right)}}{2\left(-12\right)}
ବର୍ଗ -48.
x=\frac{-\left(-48\right)±\sqrt{2304+48\left(-36\right)}}{2\left(-12\right)}
-4 କୁ -12 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-48\right)±\sqrt{2304-1728}}{2\left(-12\right)}
48 କୁ -36 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-48\right)±\sqrt{576}}{2\left(-12\right)}
2304 କୁ -1728 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-48\right)±24}{2\left(-12\right)}
576 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{48±24}{2\left(-12\right)}
-48 ର ବିପରୀତ ହେଉଛି 48.
x=\frac{48±24}{-24}
2 କୁ -12 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{72}{-24}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{48±24}{-24} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 48 କୁ 24 ସହ ଯୋଡନ୍ତୁ.
x=-3
72 କୁ -24 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{24}{-24}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{48±24}{-24} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 48 ରୁ 24 ବିୟୋଗ କରନ୍ତୁ.
x=-1
24 କୁ -24 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
-12x^{2}-48x-36=-12\left(x-\left(-3\right)\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ -3 ଏବଂ x_{2} ପାଇଁ -1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-12x^{2}-48x-36=-12\left(x+3\right)\left(x+1\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}